Site icon R-bloggers

Burtin’s Antibiotics visualization in Plotly and R

[This article was first published on R – Modern Data, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

In this post, we’ll try to re-create Burtin’s antibiotics visualization using Plotly. The post follows Mike Bostock’s original re-creation in Protovis. See here.

library(plotly)
library(reshape2)
library(dplyr)

# Data
df <- read.csv("https://cdn.rawgit.com/plotly/datasets/5360f5cd/Antibiotics.csv", stringsAsFactors = F)
N <- nrow(df)

# Melting for easier use later on
df$Seq <- 1:N
df <- melt(df, id.vars = c("Bacteria", "Gram", "Seq")) %>% arrange(Seq)

# Angle generation
theta.start <- (5/2)*pi - pi/10
theta.end <- pi/2 + pi/10
theta.range <- seq(theta.start, theta.end, length.out = N * 4 - 1)
dtheta <- diff(theta.range)[1]

# Fine adjustment for larger ticks (black)
inc <- 0.04

# Angles for larger ticks
big_ticks <- theta.range[1:length(theta.range) %% 4 == 0]
big_ticks <- c(theta.range[1] - dtheta, big_ticks, theta.range[length(theta.range)] + dtheta)

# Angles for smaller ticks
small_ticks <- theta.range[1:length(theta.range) %% 4 != 0]

# Set inner and outer radii
inner.radius <- 0.3
outer.radius <- 1

# Set colors
cols <- c("#0a3264","#c84632","#000000")
pos_col <- "rgba(174, 174, 184, .8)"
neg_col <- "rgba(230, 130, 110, .8)"

# Function to calculate radius given minimum inhibitory concentration
# Scaling function is sqrt(log(x))
radiusFUNC <- function(x){
    min <- sqrt(log(0.001 * 1e4))
    max <- sqrt(log(1000 * 1e4))
    a <- (outer.radius - inner.radius)/(min - max)
    b <- inner.radius - a * max
    rad <- a * sqrt(log(x * 1e4)) + b

    return(rad)
}

SEQ <- function(start, by, length){
    vec <- c()
    vec[1] <- start

    for(i in 2:length){
        vec[i] <- vec[i-1] + by
    }

    return(vec)
}

# Generate x and y coordinates for large ticks
radial_gridlines <- data.frame(theta = big_ticks,
                               x = (inner.radius - inc) * cos(big_ticks),
                               y = (inner.radius - inc) * sin(big_ticks),
                               xend = (outer.radius + inc) * cos(big_ticks),
                               yend = (outer.radius + inc) * sin(big_ticks))

# Generate x and y coordinates for antibiotics
antibiotics <- df
antibiotics$x <- inner.radius * cos(small_ticks)
antibiotics$y <- inner.radius * sin(small_ticks)
antibiotics$xend <- radiusFUNC(df$value) * cos(small_ticks)
antibiotics$yend <- radiusFUNC(df$value) * sin(small_ticks)
antibiotics$text <- with(antibiotics,
                         paste("<b>Bacteria:</b>", Bacteria, "<br>",
                               "<b>Antibiotic:</b>", variable, "<br>",
                               "<b>Min. conc:</b>", value, "<br>"))

# Generate x and y coordinates for white circles (grid)
rad <- c(100, 10, 1, 0.1, 0.01, 0.001)
rad <- c(inner.radius, radiusFUNC(rad))
theta <- seq(0, 2 * pi, length.out = 100)

circles <- lapply(rad, function(x){
    x.coord <- x * cos(theta)
    y.coord <- x * sin(theta)

    return(data.frame(label = which(rad == x),
                      x = x.coord,
                      y = y.coord))
})

circles <- do.call(rbind, lapply(circles, data.frame))

# Generate gram-negative polygon
theta <- seq(big_ticks[1], big_ticks[10], length.out = 100)

gram.neg <- data.frame(theta = theta,
                       x = inner.radius * cos(theta),
                       y = inner.radius * sin(theta))

theta <- rev(theta)

gram.neg <- rbind(gram.neg,
                  data.frame(theta = theta,
                             x = outer.radius * cos(theta),
                             y = outer.radius * sin(theta)))

# Generate gram-positive polygon
theta <- seq(big_ticks[10], big_ticks[length(big_ticks)], length.out = 100)

gram.pos <- data.frame(theta = theta,
                       x = inner.radius * cos(theta),
                       y = inner.radius * sin(theta))

theta <- rev(theta)

gram.pos <- rbind(gram.pos,
                  data.frame(theta = theta,
                             x = outer.radius * cos(theta),
                             y = outer.radius * sin(theta)))

# Text annotations - bacteria name
bacteria.df <- data.frame(bacteria = unique(antibiotics$Bacteria),
                                theta = big_ticks[-length(big_ticks)] - 0.17,
                                stringsAsFactors = F)

bacteria.df$x <- (outer.radius + inc) * cos(bacteria.df$theta)
bacteria.df$y <- (outer.radius + inc) * sin(bacteria.df$theta)
bacteria.df$textangle <- SEQ(-70, by = 21, length = nrow(bacteria.df))
bacteria.df$textangle[9:nrow(bacteria.df)] <-
    (bacteria.df$textangle[9:nrow(bacteria.df)] - 90) - 90

bacteria.df <- lapply(1:nrow(bacteria.df), function(x){

    list(x = outer.radius*cos(bacteria.df$theta[x]) ,
         y = outer.radius*sin(bacteria.df$theta[x]),
         xref = "plot", yref = "plot",
         xanchor = "center", yanchor = "middle",
         text = bacteria.df$bacteria[x],
         showarrow = F,
          = list(size = 12, family = "arial"),
         textangle = bacteria.df$textangle[x])
})

# Title
bacteria.df[[17]] <- list(x = 0, y = 1,
                          xref = "paper", yref = "paper",
                          xanchor = "left", yanchor = "top",
                          text = "<b>Burtin’s Antibiotics</b>",
                          showarrow = F,
                           = list(size = 30, family = "serif"))

# Text annotations - scale
scale.annotate <- data.frame(x = 0,
                             y = c(inner.radius, radiusFUNC(c(100, 10, 1, 0.1, 0.01, 0.001))),
                             scale = c("", "100", "10", "1", "0.1", "0.01","0.001"))

# Plot
p <- plot_ly(x = ~x, y = ~y, xend = ~xend, yend = ~yend,
        hoverinfo = "text",
        height = 900, width = 800) %>%

    # Gram negative sector
    add_polygons(data = gram.neg,
                 x = ~x, y = ~y,
                 line = list(color = "transparent"),
                 fillcolor = neg_col,
                 inherit = F,
                 hoverinfo = "none") %>%

    # Gram positive sector
    add_polygons(data = gram.pos,
                 x = ~x, y = ~y,
                 line = list(color = "transparent"),
                 fillcolor = pos_col,
                 inherit = F,
                 hoverinfo = "none") %>%

    # Antibiotics
    add_segments(data = antibiotics %>% filter(variable == "Penicillin"),
                 text = ~text,
                 line = list(color = cols[1], width = 7)) %>%

    add_segments(data = antibiotics %>% filter(variable == "Streptomycin"),
                 text = ~text,
                 line = list(color = cols[2], width = 7)) %>%

    add_segments(data = antibiotics %>% filter(variable == "Neomycin"),
                 text = ~text,
                 line = list(color = cols[3], width = 7)) %>%

    # Black large ticks
    add_segments(data = radial_gridlines, line = list(color = "black", width = 2),
                 hoverinfo = "none") %>%

    # White circles
    add_polygons(data = circles,
                 x = ~x, y = ~y,
                 group_by = ~label,
                 line = list(color = "#eeeeee", width = 1),
                 fillcolor = "transparent",
                 inherit = F,
                 hoverinfo = "none") %>%

    # Scale labels
    add_text(data = scale.annotate, x = ~x, y = ~y, text = ~scale,
             inherit = F,
             text = list(size = 10, color = "black"),
             hoverinfo = "none") %>%

    # Gram labels
    add_markers(x = c(-0.05, -0.05), y = c(-1.4, -1.5),
                marker = list(color = c(neg_col, pos_col), size = 15),
                inherit = F, hoverinfo = "none") %>%

    add_text(x = c(0.15, 0.15), y = c(-1.4, -1.5), text = c("Gram Negative", "Gram Positive"),
             text = list(size = 10, color = "black"),
             inherit = F, hoverinfo = "none") %>%

    # Antibiotic legend
    add_markers(x = c(-0.15, -0.15, -0.15), y = c(0.1, 0, -0.1),
                marker = list(color = c(cols), size = 15, symbol = "square"),
                inherit = F, hoverinfo = "none") %>%

    add_text(x = c(0.05, 0.05, 0.05), y = c(0.1, 0, -0.1),
             text = c("Penicillin", "Streptomycin", "Neomycin"),
             text = list(size = 10, color = "black"),
             inherit = F, hoverinfo = "none") %>%


    layout(showlegend = F,
           xaxis = list(showgrid = F, zeroline = F, showticklabels = F, title = "", domain = c(0.05, 0.95)),
           yaxis = list(showgrid = F, zeroline = F, showticklabels = F, title = "", domain = c(0.05, 0.95)),
           plot_bgcolor = "rgb(240, 225, 210)",
           paper_bgcolor = "rgb(240, 225, 210)",

           # Annotations
           annotations = bacteria.df)
p

To leave a comment for the author, please follow the link and comment on their blog: R – Modern Data.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.