rxNeuralNet vs. xgBoost vs. H2O

[This article was first published on R – TomazTsql, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Recently, I did a session at local user group in Ljubljana, Slovenija, where I introduced the new algorithms that are available with MicrosoftML package for Microsoft R Server 9.0.3.

For dataset, I have used two from (still currently) running sessions from Kaggle. In the last part, I did image detection and prediction of MNIST dataset and compared the performance and accuracy between.

MNIST Handwritten digit database is available here.

picture2

Starting off with rxNeuralNet, we have to build a NET# model or Neural network to work it’s way.

Model for Neural network:

const { T = true; F = false; }

input Picture [28, 28];

hidden C1 [5 * 13^2]
from Picture convolve {
InputShape  = [28, 28];
UpperPad    = [ 1,  1];
KernelShape = [ 5,  5];
Stride      = [ 2,  2];
MapCount = 5;
}

hidden C2 [50, 5, 5]
from C1 convolve {
InputShape  = [ 5, 13, 13];
KernelShape = [ 1,  5,  5];
Stride      = [ 1,  2,  2];
Sharing     = [ F,  T,  T];
MapCount = 10;
}

hidden H3 [100]
from C2 all;

// Output layer definition.
output Result [10]
from H3 all;

Once we have this, we can work out with rxNeuralNet algorithm:

model_DNN_GPU <- rxNeuralNet(label ~.
      ,data = dataTrain
      ,type = "multi"
      ,numIterations = 10
      ,normalize = "no"
      #,acceleration = "gpu" #enable this if you have CUDA driver
      ,miniBatchSize = 64 #set to 1 else set to 64 if you have CUDA driver problem 
      ,netDefinition = netDefinition
      ,optimizer = sgd(learningRate = 0.1, lRateRedRatio = 0.9, lRateRedFreq = 10)
)

Then do the prediction and calculate accuracy matrix:

DNN_GPU_score <- rxPredict(model_DNN_GPU, dataTest, extraVarsToWrite = "label")
sum(Score_DNN$Label == DNN_GPU_score$PredictedLabel)/dim(DNN_GPU_score)[1]

Accuracy for this model is:

[1] 0.9789

 

When working with H2O package, the following code was executed to get same paramethers for Neural network:

model_h20 <- h2o.deeplearning(x = 2:785
                     ,y = 1   # label for label
                     ,training_frame = train_h2o
                     ,activation = "RectifierWithDropout"
                     ,input_dropout_ratio = 0.2 # % of inputs dropout
                     ,hidden_dropout_ratios = c(0.5,0.5) # % for nodes dropout
                     ,balance_classes = TRUE 
                     ,hidden = c(50,100,100) 
                     ,momentum_stable = 0.99
                     ,nesterov_accelerated_gradient = T # use it for speed
                     ,epochs = 15)

When results of test dataset against the learned model is executed:

h2o.confusionMatrix(model_h20)
100-(416/9978)*100

the  result is confusion matrix for accuracy of predicted values with value of:

# [1] 95.83083

 

For comparison, I have added xgBoost (eXtrem Gradient Boosting), but this time, I will not focus on this one.

Time comparison against the packages (in seconds), from left to right are: H20, MicrosoftML with GPU acceleration, MicrosoftML without GPU acceleration and xgBoost.

picture1

As for the accuracy of the trained model, here are results (based on my tests):

MicrosoftML – Neural Network – 97,8%

H20 – Deep Learning – 95,3 %

xgBoost – 94,9 %

 

As always, code and dataset are available at GitHub.

Happy R-ing ?

 

 


To leave a comment for the author, please follow the link and comment on their blog: R – TomazTsql.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)