Function to Simulate Parabolic Shot with Drag.

[This article was first published on Data R Value, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Script to calculate the most important quantitative information of the drag parabolic shot in International System of Units.
If you want to use another system of units you can do it by making some simple changes.

This is a first approach to the problem and is totally perfectible.

To calculate the maximum range, a transcendental equation is solved regularly, but here we did a first run with a number of time values left over to approximate the time index for which the vertical position becomes zero.

Inputs of the function are:
a) initial velocity vo (scalar) [m/s]
b) shot angle alfa [degrees]
c) (drag coefficient / mass) = b [m^-1]

Parameter
g) gravity acceleration g = 9.81 [m/s^2]

The outputs of the function are:
T_1: ascending time [s]
H: maximum height [m]
L: maximum horizontal range [m]

We need to calculate:
x: horizontal position at time t [m]
y: vertical position at time t [m]
vox: horizontal initial velocity [m/s]
voy: vertical initial velocity [m/s]

drag_parabolic <- function(vo, alpha, b){
 
  g <- 9.81
  an <- (2*pi*alpha)/360
  vox <- vo*cos(an)
  voy <- vo*sin(an)
  T_1 <- (1/b)*log(1+(b*voy/g))
  H <- (voy/b)-((g/b^2)*log(1+(b*voy/g)))
 
 
# first run

  t <- seq(0, 25, 1/10)

  x <- vector()
  y <- vector()
 
  x <- (vox/b)*(1-exp(-b*t))
  y <- ((1/b)*((g/b)+voy)*(1-exp(-b*t)))-((g/b)*t)
 
 
# time index of max. range

  a_T <- which(y < 0)[1]-1
 
 
# second run

  t_t <- head(t, a_T)
 
  xx <- vector()
  yy <- vector()
 
  xx <- (vox/b)*(1-exp(-b*t_t))
  yy <- ((1/b)*((g/b)+voy)*(1-exp(-b*t_t)))-((g/b)*t_t)
 
  R <- round(xx[length(xx)],2)
  H <- round(H,2)
  

  plot(xx, yy, xlab=”X”, ylab=”Y”, type = “o”, col = “blue”, axes=F)
  

  axis(1, at = seq(0,R,R/10),labels = seq(0,R,R/10), cex.axis = 0.7)
  axis(2, at = seq(0,H,H/10),labels = seq(0,H,H/10), cex.axis = 0.7)
 
  print(“Initial Velocity”);print(paste(vo,”m/s”))
  print(“Angle of Shot”);print(paste(alpha,”degrees”))
  print(“Ascending Time”);print(paste(T_1,”s”))
  print(“Maximum Height”);print(paste(H,”m”))
  print(“Aprox. Max. Range”);print(paste(R,”m”, “+-2%”))
 
  legend(R/3, H/2, legend = c(paste(“vo =”, vo, “m/s”),
                   paste(“alpha =”, alpha,”degrees”),
                   paste(“Ascending time”, paste(T_1,”s”)),
                   paste(“Maximum height”, paste(H,”m”)),
                   paste(“Aprox. Max. Range”, paste(R,”m”,”+-2%”))),
                   cex=0.7, bg = par(“bg”))
  

title(main = “Drag Parabolic Shot”, sub = “”)
}


Let’s try the function:

drag_parabolic(50, 45, 0.5)


 We compare with a simple parabolic shot with the same parameters:


 


I will be glad to receive your comments and suggestions to improve the script.
 
Get the script in:
https://github.com/pakinja/Data-R-Value 

To leave a comment for the author, please follow the link and comment on their blog: Data R Value.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)