Replicating NYT Weather App

[This article was first published on Jkunst - R category, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

So much time since my last post so I want to post something, no matter what it is, but I hope this will be somehow helpfull

In this post I will show some new features for the next version of highcharter package. The main feature added is hc_add_series now is a generic function! This mean you can add the data argument can be numeric, data frame, time series (ts, xts, ohlc) amonth others so the syntaxis will be a little cleaner.

What we’ll do here? We’ll make an interactive version of the well-well-know-and-a-little-repeated Tufte weather chart.

There are good ggplot versions if you can start https://rpubs.com/tyshynsk/133318 and https://rpubs.com/bradleyboehmke/weather_graphic.

But our focus will be replicate the New York Time App: How Much Warmer Was Your City in 2015? where you can choose among over 3K cities!. So let’s start. So we need a interactive charting library and shiny.

Data

If you search/explore in the devTools in the previous link you can know where is the path of the used data. So to be clear:

All the data used in this post is from http://www.nytimes.com – Me.

We’ll load the tidyverse, download the data, and create an auxiliar variable dt to store the date time in numeric format.

library(printr)
library(tidyverse)
library(highcharter)
library(lubridate)
library(stringr)
library(forcats)

url_base <- "http://graphics8.nytimes.com/newsgraphics/2016/01/01/weather/assets"
file <- "new-york_ny.csv" # "san-francisco_ca.csv"
url_file <- file.path(url_base, file)

data <- read_csv(url_file)
data <- mutate(data, dt = datetime_to_timestamp(date))

head(data)
date month temp_max temp_min temp_rec_max temp_rec_min temp_avg_max temp_avg_min temp_rec_high temp_rec_low precip_value precip_actual precip_normal precip_rec snow_rec annual_average_temperature departure_from_normal total_precipitation precipitation_departure_from_normal dt
2015-01-01 1 39 27 62 -4 39 28 NULL NULL 0.00 5.23 3.65 NULL NULL NA NA NA NA 1.42e+12
2015-01-02 1 42 35 68 2 39 28 NULL NULL 0.00 NA NA NULL NULL NA NA NA NA 1.42e+12
2015-01-03 1 42 33 64 -4 39 28 NULL NULL 0.71 NA NA NULL NA NA NA NA NA 1.42e+12
2015-01-04 1 56 41 66 -3 39 27 NULL NULL 1.01 NA NA NULL NULL NA NA NA NA 1.42e+12
2015-01-05 1 49 21 64 -4 38 27 NULL NULL 1.01 NA NA NULL NULL NA NA NA NA 1.42e+12
2015-01-06 1 22 19 72 -2 38 27 NULL NULL 1.06 NA NA NULL NULL NA NA NA NA 1.42e+12

Setup

Due the data is ready we’ll start to create the chart (a highchart object):

hc <- highchart() %>%
  hc_xAxis(type = "datetime", showLastLabel = FALSE,
           dateTimeLabelFormats = list(month = "%B")) %>% 
  hc_tooltip(shared = TRUE, useHTML = TRUE,
             headerFormat = as.character(tags$small("{point.x: %b %d}", tags$br()))) %>% 
  hc_plotOptions(series = list(borderWidth = 0, pointWidth = 4)) %>% 
  hc_add_theme(hc_theme_smpl())

hc

open

No data to display. All acording to the plan XD.

Temperature Data

We’ll select the temperature columns from the data and do some wrangling, gather, spread, separate and recodes to get a nice tidy data frame.

dtempgather <- data %>% 
  select(dt, starts_with("temp")) %>% 
  select(-temp_rec_high, -temp_rec_low) %>% 
  rename(temp_actual_max = temp_max,
         temp_actual_min = temp_min) %>% 
  gather(key, value, -dt) %>% 
  mutate(key = str_replace(key, "temp_", "")) 

dtempspread <- dtempgather %>% 
  separate(key, c("serie", "type"), sep = "_") %>% 
  spread(type, value)

temps <- dtempspread %>% 
  mutate(serie = factor(serie, levels = c("rec", "avg", "actual")),
         serie = fct_recode(serie, Record = "rec", Normal = "avg", Observed = "actual"))

head(temps)
dt serie max min
1.42e+12 Observed 39 27
1.42e+12 Normal 39 28
1.42e+12 Record 62 -4
1.42e+12 Observed 42 35
1.42e+12 Normal 39 28
1.42e+12 Record 68 2

Now whe can add this data to the highchart object using hc_add_series:

hc <- hc %>% 
  hc_add_series(temps, type = "columnrange",
                hcaes(dt, low = min, high = max, group = serie),
                color = c("#ECEBE3", "#C8B8B9", "#A90048")) 

hc

open

A really similar chart of what we want!

The original chart show records of temprerature. So we need to filter the days with temperature records using the columns temp_rec_high and temp_rec_low, then some gathers and tweaks. Then set some options to show the points, like use fill color and some longer radius.

records <- data %>%
  select(dt, temp_rec_high, temp_rec_low) %>% 
  filter(temp_rec_high != "NULL" | temp_rec_low != "NULL") %>% 
  dmap_if(is.character, str_extract, "\\d+") %>% 
  dmap_if(is.character, as.numeric) %>% 
  gather(type, value, -dt) %>% 
  filter(!is.na(value)) %>% 
  mutate(type = str_replace(type, "temp_rec_", ""),
         type = paste("This year record", type))

pointsyles <- list(
  symbol = "circle",
  lineWidth= 1,
  radius= 4,
  fillColor= "#FFFFFF",
  lineColor= NULL
)

head(records)
dt type value
1.44e+12 This year record high 95
1.44e+12 This year record high 97
1.45e+12 This year record high 74
1.45e+12 This year record high 67
1.45e+12 This year record high 67
1.45e+12 This year record high 68
hc <- hc %>% 
  hc_add_series(records, "point", hcaes(x = dt, y = value, group = type),
                marker = pointsyles)

hc

open

We’re good.

Precipitation Data

A nice feture of the NYTs app is and the chart is show the precipitaion by month. This data is in other axis. So we need to create a list with 2 axis using the create_yaxis helper and the adding this axis to the chart.

axis <- create_yaxis(
  naxis = 2,
  heights = c(3,1),
  sep = 0.05,
  turnopposite = FALSE,
  showLastLabel = FALSE,
  startOnTick = FALSE)

Manually add titles (I know this can be more elegant) and options.

axis[[1]]$title <- list(text = "Temperature")
axis[[1]]$labels <- list(format = "{value}?F")

axis[[2]]$title <- list(text = "Precipitation")
axis[[2]]$min <- 0

hc <- hc_yAxis_multiples(hc, axis)

hc

open

The 2 axis are ready, now we need add the data. We will add 12 series -one for each month- but we want to asociate 1 legend for all these 12 series, so we need to use id and linkedTo parameters and obviously. That’s why the id will be a 'p' for the firt element and then NA to the other 11. And then linked this 11 to the first series (id = 'p').

precip <- select(data, dt, precip_value, month)

hc <- hc %>%
  hc_add_series(precip, type = "area", hcaes(dt, precip_value, group = month),
                name = "Precipitation", color = "#008ED0", lineWidth = 1,
                yAxis = 1, fillColor = "#EBEAE2", 
                id = c("p", rep(NA, 11)), linkedTo = c(NA, rep("p", 11)))

The same way we’ll add the normal precipitations by month.

precipnormal <- data %>% 
  select(dt, precip_normal, month) %>% 
  group_by(month) %>% 
  filter(row_number() %in% c(1, n())) %>%
  ungroup() %>% 
  fill(precip_normal)

hc <- hc %>% 
  hc_add_series(precipnormal, "line", hcaes(x = dt, y = precip_normal, group = month),
                name = "Normal Precipitation", color = "#008ED0", yAxis = 1,
                id = c("np", rep(NA, 11)), linkedTo = c(NA, rep("np", 11)),
                lineWidth = 1)

Volia

Curious how the chart looks? Me too! Nah, I saw the chart before this post.

hc

open

With R you can create a press style chart with some wrangling and charting. Now with a little of love we can make the code resuable to make a shiny app.

Homework

Someone put the grid lines for the 2 axis as the original NYT app please to these charts! I will grateful if someone code that details.

See you :B!

giphy gif source

To leave a comment for the author, please follow the link and comment on their blog: Jkunst - R category.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)