Site icon R-bloggers

ratio-of-uniforms [#4]

[This article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Possibly the last post on random number generation by Kinderman and Monahan’s (1977) ratio-of-uniform method. After fiddling with the Gamma(a,1) distribution when a<1 for a while, I indeed figured out a way to produce a bounded set with this method: considering an arbitrary cdf Φ with corresponding pdf φ, the uniform distribution on the set Λ of (u,v)’s in R⁺xX such that

0≤u≤Φοƒ[φοΦ⁻¹(u)v]

induces the distribution with density proportional to ƒ on φοΦ⁻¹(U)V. This set Λ has a boundary that is parameterised as

u=Φοƒ(x),  v=1/φοƒ(x), x∈Χ

which remains bounded in u since Φ is a cdf and in v if φ has fat enough tails. At both 0 and ∞. When ƒ is the Gamma(a,1) density this can be achieved if φ behaves like log(x)² near zero and like a inverse power at infinity. Without getting into all the gory details, closed form density φ and cdf Φ can be constructed for all a’s, as shown for a=½ by the boundaries in u and v (yellow) below

which leads to a bounded associated set Λ

At this stage, I remain uncertain of the relevance of such derivations, if only because the set A thus derived is ill-suited for uniform draws proposed on the enclosing square box. And also because a Gamma(a,1) simulation can rather simply be derived from a Gamma(a+1,1) simulation. But, who knows?!, there may be alternative usages of this representation, such as innovative slice samplers. Which means the ratio-of-uniform method may reappear on the ‘Og one of those days…


Filed under: Books, pictures, R, Statistics, University life Tagged: Luc Devroye, Non-Uniform Random Variate Generation, random number generation, ratio of uniform algorithm, University of Warwick

To leave a comment for the author, please follow the link and comment on their blog: R – Xi'an's Og.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.