Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
This afternoon, one of my Monte Carlo students at ENSAE came to me with an exercise from Monte Carlo Statistical Methods that I did not remember having written. And I thus “charged” George Casella with authorship for that exercise!
As we discussed about this question, my first suggestion was to aim at a value of N, number of Monte Carlo simulations, such that the .995 x N-th spacing had a length of less than one thousandth of the .995 x N-th order statistic. In the case of the Exponential distribution suggested in the exercise, generating order statistics is straightforward, since, as suggested by Devroye, see Section V.3.3, the i-th spacing is an Exponential variate with rate (N-i+1). This is so fast that Devroye suggests simulating Uniform order statistics by inverting Exponential order statistics (p.220)!
However, while still discussing the problem with my student, I came to a better expression of the question, which was to figure out the variance of the .995 x N-th order statistic in the Exponential case. Working with the density of this order statistic however led nowhere useful. A bit later, after Google-ing the problem, I came upon this Stack Exchange solution that made use of the spacing result mentioned above, namely that the expectation and variance of the k-th order statistic are
which leads to the proper condition on N when imposing the variability constraint.
Filed under: Books, Kids, pictures, R, Statistics, University life Tagged: climate simulation, ecdf, empirical cdf, ENSAE, George Casella, Luc Devroye, Malakoff, Master program, Monte Carlo Statistical Methods, order statistics, spacings
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.