Site icon R-bloggers

October Package Picks

[This article was first published on RStudio, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

by Joseph Rickert

In my August Package Picks post, I explained that my selection criteria favor packages with vignettes. (I find skimming through a package’s vignettes to be an effective method of “grokking” what a package is all about.) I also questioned why a person would go to all of the trouble to develop a package and put it on CRAN without writing a vignette. Since writing that post, I have had the opportunity to speak with experienced package authors who argue, with some considerable authority, that the object documentation (what you get when you type “?foo” at the console) and the README file comprise a package’s most important documentation.

This is undoubtedly true, and self-evident once a person has decided to use the package. It is also true that the R Community is diligent: people pay attention, and really useful packages seem to get discovered rather quickly in spite of CRAN’s low signal-to-noise ratio. Nevertheless, CRAN is poised to blow through the 10,000 package milestone sometime soon. Package discovery and audition is hard work. As a potential user of a given package, I very much appreciate and benefit from the elaboration of a package’s capabilities and the extended examples found in well-done vignettes, and I suspect that others do, too.

Of the 174 packages submitted to CRAN in October, I have picked out 22 that I thought were particularly interesting, and listed them below in four categories: Data, Machine Learning, Miscellaneous, and Statistics.

Data

All of these packages enable access to data either by directly packaging up the data, or through functions to access data directly from a remote source, or via an API.

Machine Learning

The two packages listed here should be helpful in common machine learning workflows.

Miscellaneous

The packages listed here cover a wide range of interests and capabilities: cryptography, flow charts, browser automation, discrete event simulation, and styling reports. This kind of diversity showcases R as a general-purpose programming language.

Statistics

I believe one of the real strengths of R is that, in addition to developing new methods and algorithms, statisticians continue to write packages that enhance or improve basic calculations. The package system encourages “kaizen”, or continuous improvement.

If you find that I have missed something important in one of my package review posts, please let me know.

To leave a comment for the author, please follow the link and comment on their blog: RStudio.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.