Custom Templated as and wrap Functions within Rcpp.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Introduction
Consider a need to be able to interface with a data type that is not presently supported by Rcpp. The data type might come from a new library or from within ones own program. In such cases, Rcpp is faced with an issue of consciousness as the new data type is not similar to known types so the autocoversion or seamless R to C++ integration cannot be applied correctly. The issue is two fold:
- Converting from R to C++ (
Rcpp::as<T>(obj)
) - Converting from C++ to R (
Rcpp::wrap(obj)
)
Luckily, there is a wonderful Rcpp vignette called Extending Rcpp that addresses custom objects. However, the details listed are more abstracted than one would like. So, I’m going to try to take you through the steps with a bit of commentary. Please note that the approach used is via Templates and partial specialization and will result in some nice automagic at the end.
The overview of the discussion will focus on:
- Stage 1 – Forward Declarations
- Stage 2 – Including the Rcpp Header
- Stage 3 – Implementation of Forward Declarations
- Stage 4 – Testing Functionality
- Stage 5 – All together
Explanation of Stages
Stage 1 – Forward Declarations
In the first stage, we must declare our intent to the features we wish to use prior to engaging Rcpp.h
. To do so, we will load a different header file and add some definitions to the Rcpp::traits
namespace.
Principally, when we start writing the file, the first header that we must load is RcppCommon.h
and not the usual Rcpp.h
!! If we do not place the forward declaration prior to the Rcpp.h
call, we will be unable to appropriately register our extension.
Then, we must add in the different plugin markup for sourceCpp()
to set the appropriate flags during the compilation of the code. After the plugins, we will include the actual boost headers that we want to use. Lastly, we must add two special Rcpp function declaration, Rcpp::as<T>(obj)
and Rcpp::wrap(obj)
, within Rcpp::traits
namespace. To enable multiple types, we must create an Exporter
class instead of a more direct call to template <> ClassName as( SEXP )
.
// -------------- Stage 1: Forward Declarations with `RcppCommon.h`
#include <RcppCommon.h>
// Flags for C++ compiler
// [[Rcpp::depends(BH)]]
// [[Rcpp::plugins("cpp11")]]
// Third party library includes that provide the template class of ublas
#include <boost/numeric/ublas/matrix_sparse.hpp>
#include <boost/numeric/ublas/matrix.hpp>
// Provide Forward Declarations
namespace Rcpp {
namespace traits{
// Setup non-intrusive extension via template specialization for
// 'ublas' class boost::numeric::ublas
// Support for wrap
template <typename T> SEXP wrap(const boost::numeric::ublas::vector<T> & obj);
// Support for as<T>
template <typename T> class Exporter< boost::numeric::ublas::vector<T> >;
}
}
Stage 2 – Include the Rcpp.h
It might seem frivolous to have a stage just to declare import order, but if Rcpp.h
is included before the forward declaration then Rcpp::traits
is not updated and we enter the abyss.
Thus:
// -------------- Stage 2: Including Rcpp.h
// ------ Place <Rcpp.h> AFTER the Forward Declaration!!!!
#include <Rcpp.h>
// ------ Place Implementations of Forward Declarations AFTER <Rcpp.h>!
Stage 3 – Implementing the Declarations
Now, we must actually implement the forward declarations. In particular, the only implementation that will be slightly problematic is the as<>
since the wrap()
is straight forward.
wrap()
To implement wrap()
we must appeal to a built in type conversion index within Rcpp called Rcpp::traits::r_sexptype_traits<T>::rtype
. From this, we are able to obtain an int
containing the RTYPE
and then construct an Rcpp::Vector
. For the construction of a matrix, the same ideas hold true.
as()
For as<>()
, we need to consider the template that will be passed in. Furthermore, we setup a typedef
directly underneath the Exporter
class definition to easily define an OUT
object to be used within the get()
method. Outside of that, we use the same trick to move back and forth from a C++ T
type to an R
type.
In order to accomplish the as<>
, or the direct port from R to C++, I had to do something dirty: I copied the vector contents. The code that governs this output is given within the get()
of the Exporter
class. You may wish to spend some time looking into changing the assignment using pointers perhaps. I’m not very well versed with ublas
so I did not see an easy approach to resolve the pointer pass.
// -------------- Stage 3: Implementation the Declarations
// Define template specializations for as<> and wrap
namespace Rcpp {
namespace traits{
// Defined wrap case
template <typename T> SEXP wrap(const boost::numeric::ublas::vector<T> & obj){
const int RTYPE = Rcpp::traits::r_sexptype_traits<T>::rtype ;
return Rcpp::Vector< RTYPE >(obj.begin(), obj.end());
};
// Defined as< > case
template<typename T>
class Exporter< boost::numeric::ublas::vector<T> > {
typedef typename boost::numeric::ublas::vector<T> OUT ;
// Convert the type to a valid rtype.
const static int RTYPE = Rcpp::traits::r_sexptype_traits< T >::rtype ;
Rcpp::Vector<RTYPE> vec;
public:
Exporter(SEXP x) : vec(x) {
if (TYPEOF(x) != RTYPE)
throw std::invalid_argument("Wrong R type for mapped 1D array");
}
OUT get() {
// Need to figure out a way to perhaps do a pointer pass?
OUT x(vec.size());
std::copy(vec.begin(), vec.end(), x.begin()); // have to copy data
return x;
}
} ;
}
}
Stage 4 – Testing
Okay, let’s see if what we worked on paid off (spoiler It did! spoiler). To check, we should look at two different areas:
- Trace diagnostics within the function and;
- An automagic test.
Both of which are given below. Note that I’ve opted to shorten the ublas
setup to just be:
// -------------- Stage 4: Testing
// Here we define a shortcut to the boost ublas class to enable multiple ublas types via a template.
// ublas::vector<T> => ublas::vector<double>, ... , ublas::vector<int>
namespace ublas = ::boost::numeric::ublas;
Trace Diagnostics
// [[Rcpp::export]]
void containment_test(Rcpp::NumericVector x1) {
Rcpp::Rcout << "Converting from Rcpp::NumericVector to ublas::vector<double>" << std::endl;
ublas::vector<double> x = Rcpp::as< ublas::vector<double> >(x1); // initialize the vector to all zero
Rcpp::Rcout << "Running output test with ublas::vector<double>" << std::endl;
for (unsigned i = 0; i < x.size (); ++ i)
Rcpp::Rcout << x(i) << std::endl;
Rcpp::Rcout << "Converting from ublas::vector<double> to Rcpp::NumericVector" << std::endl;
Rcpp::NumericVector test = Rcpp::wrap(x);
Rcpp::Rcout << "Running output test with Rcpp::NumericVector" << std::endl;
for (unsigned i = 0; i < test.size (); ++ i)
Rcpp::Rcout << test(i) << std::endl;
}
Test Call:
containment_test(c(1,2,3,4))
Results:
Converting from Rcpp::NumericVector to ublas::vector<double> Running output test with ublas::vector<double> 1 2 3 4 Converting from ublas::vector<double> to Rcpp::NumericVector Running output test with Rcpp::NumericVector 1 2 3 4
This test performed as expected. Onto the next test!
Automagic test
// [[Rcpp::export]]
ublas::vector<double> automagic_ublas_rcpp(ublas::vector<double> x1) {
return x1;
}
Test Call:
automagic_ublas_rcpp(c(1,2,3.2,1.2))
Results:
automagic_ublas_rcpp(c(1,2,3.2,1.2))
[1] 1.0 2.0 3.2 1.2
Success!
Stage 5 - All together
Here is the combination of the above code chunks given by stage. If you copy and paste this into your .cpp
file, then everything should work. If not, let me know.
// -------------- Stage 1: Forward Declarations with `RcppCommon.h`
#include <RcppCommon.h>
// Flags for C++ compiler
// [[Rcpp::depends(BH)]]
// [[Rcpp::plugins("cpp11")]]
// Third party library includes that provide the template class of ublas
#include <boost/numeric/ublas/matrix_sparse.hpp>
#include <boost/numeric/ublas/matrix.hpp>
// Provide Forward Declarations
namespace Rcpp {
namespace traits{
// Setup non-intrusive extension via template specialization for
// 'ublas' class boost::numeric::ublas
// Support for wrap
template <typename T> SEXP wrap(const boost::numeric::ublas::vector<T> & obj);
// Support for as<T>
template <typename T> class Exporter< boost::numeric::ublas::vector<T> >;
}
}
// -------------- Stage 2: Including Rcpp.h
// ------ Place <Rcpp.h> AFTER the Forward Declaration!!!!
#include <Rcpp.h>
// ------ Place Implementations of Forward Declarations AFTER <Rcpp.h>!
// -------------- Stage 3: Implementation the Declarations
// Define template specializations for as<> and wrap
namespace Rcpp {
namespace traits{
// Defined wrap case
template <typename T> SEXP wrap(const boost::numeric::ublas::vector<T> & obj){
const int RTYPE = Rcpp::traits::r_sexptype_traits<T>::rtype ;
return Rcpp::Vector< RTYPE >(obj.begin(), obj.end());
};
// Defined as< > case
template<typename T>
class Exporter< boost::numeric::ublas::vector<T> > {
typedef typename boost::numeric::ublas::vector<T> OUT ;
// Convert the type to a valid rtype.
const static int RTYPE = Rcpp::traits::r_sexptype_traits< T >::rtype ;
Rcpp::Vector<RTYPE> vec;
public:
Exporter(SEXP x) : vec(x) {
if (TYPEOF(x) != RTYPE)
throw std::invalid_argument("Wrong R type for mapped 1D array");
}
OUT get() {
// Need to figure out a way to perhaps do a pointer pass?
OUT x(vec.size());
std::copy(vec.begin(), vec.end(), x.begin()); // have to copy data
return x;
}
} ;
}
}
// -------------- Stage 4: Testing
// Here we define a shortcut to the boost ublas class to enable multiple ublas types via a template.
// ublas::vector<T> => ublas::vector<double>, ... , ublas::vector<int>
namespace ublas = ::boost::numeric::ublas;
// [[Rcpp::export]]
void containment_test(Rcpp::NumericVector x1) {
Rcpp::Rcout << "Converting from Rcpp::NumericVector to ublas::vector<double>" << std::endl;
ublas::vector<double> x = Rcpp::as< ublas::vector<double> >(x1); // initialize the vector to all zero
Rcpp::Rcout << "Running output test with ublas::vector<double>" << std::endl;
for (unsigned i = 0; i < x.size (); ++ i)
Rcpp::Rcout << x(i) << std::endl;
Rcpp::Rcout << "Converting from ublas::vector<double> to Rcpp::NumericVector" << std::endl;
Rcpp::NumericVector test = Rcpp::wrap(x);
Rcpp::Rcout << "Running output test with Rcpp::NumericVector" << std::endl;
for (unsigned i = 0; i < test.size (); ++ i)
Rcpp::Rcout << test(i) << std::endl;
}
// [[Rcpp::export]]
ublas::vector<double> automagic_ublas_rcpp(ublas::vector<double> x1) {
return x1;
}
Closing Remarks
Whew… That was a lot. Hopefully, the above provided enough information as you may want to extend this post’s content past 1D
vectors to perhaps a ublas::matrix
and so on. In addition, the you now have the autoconvert magic of Rcpp
for ublas::vector<double>
! Moreover, all one needs to do is specify the either the parameters or return type of the function to be ublas::vector<double>
and voila conversion!
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.