Site icon R-bloggers

A Preview of My Talk for the Data Science Africa Workshop organized by the United Nations

[This article was first published on R – Emaasit's Blog, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

I am excited to be invited by the United Nations Global Pulse lab to speak at the 2nd Data Science Africa Workshop scheduled to take place in Kampala, Uganda from 30th June to 1st July. The theme of this workshop is “Using data science to monitor and achieve the global goals (UNDP goals) in Africa“. I will be speaking particularly on “Data Science for Sustainable Cities”. My talk is titled: “Sustainable Urban Transport Planning using Big Data from Mobile Phones“; which is the work I am doing as part of my PhD research. Particularly, I will talk about how developing countries can leverage low-cost, readily available and massive amounts of mobile phone data to improve their Transportation Planning policies.

In the past decades, there has been rapid urbanization as more and more people migrate into cities. The World Health Organization (WHO) estimates that by 2017, a majority of people will be living in urban areas. By 2030, 5 billion people—60 percent of the world’s population—will live in cities, compared with 3.6 billion in 2013. Developing nations must cope with this rapid urbanization. Transportation and urban planners must estimate travel demand for transportation facilities and use this to plan transportation infrastructure. Presently, the technique used for transportation planning uses data inputs from local and national household travel surveys. However, these surveys are expensive to conduct, cover smaller areas of cities and the time between surveys range from 5 to 10 years. This calls for new and innovative ways for Transportation Planning using new data sources.

In recent years, we have witnessed the proliferation of ubiquitous mobile computing devices in developing countries. These mobile phones capture the movement of vehicles and people in near real time and generate massive amounts of new data.  My PhD research investigates how we can utilize anonymized mobile phone data ( i.e. Call Detail Records) and probabilistic machine learning to infer travel/mobility patterns. One of the objectives of this research is to demonstrate that these new “big” data sources are cheaper alternatives for transport modeling and travel behavior studies.

We’ll have various UN and government people doing urban planning who I think would enjoy this topic — see you there! .

If you haven’t already, register for Data Science Africa Workshop 2016 here.


To leave a comment for the author, please follow the link and comment on their blog: R – Emaasit's Blog.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.