[This article was first published on Higher Order Functions, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
I wrote an answer
about why setNames()
shows up sometimes in standard evaluation with dplyr.
My explanation turned into a mini-tutorial on why those standard evaluation
functions have a .dots
argument. The basic idea is that the usual variadic
argument ...
is a series of expressions that get evaluated inside of the
dataframe.
library("dplyr") # standardize and round z_round <- . %>% scale %>% as.numeric %>% round(2) # The two expressions defining zSL, zSW are the `...` iris %>% mutate_(zSL = ~ z_round(Sepal.Length), zSW = ~ z_round(Sepal.Width)) %>% tbl_df #> # A tibble: 150 × 7 #> Sepal.Length Sepal.Width Petal.Length Petal.Width Species zSL zSW #> <dbl> <dbl> <dbl> <dbl> <fctr> <dbl> <dbl> #> 1 5.1 3.5 1.4 0.2 setosa -0.90 1.02 #> 2 4.9 3.0 1.4 0.2 setosa -1.14 -0.13 #> 3 4.7 3.2 1.3 0.2 setosa -1.38 0.33 #> 4 4.6 3.1 1.5 0.2 setosa -1.50 0.10 #> 5 5.0 3.6 1.4 0.2 setosa -1.02 1.25 #> 6 5.4 3.9 1.7 0.4 setosa -0.54 1.93 #> 7 4.6 3.4 1.4 0.3 setosa -1.50 0.79 #> 8 5.0 3.4 1.5 0.2 setosa -1.02 0.79 #> 9 4.4 2.9 1.4 0.2 setosa -1.74 -0.36 #> 10 4.9 3.1 1.5 0.1 setosa -1.14 0.10 #> # ... with 140 more rows
If we programmatically assemble or manipulate those expressions before calling
mutate_
, we can’t use that ...
, because we have a list of expressions, not
a series of individual expressions. We use the .dots
argument instead.
exps <- list( zSL = ~ z_round(Sepal.Length), zSW = ~ z_round(Sepal.Width) ) iris %>% mutate_(exps) #> Error in UseMethod("as.lazy"): no applicable method for 'as.lazy' applied to an object of class "list" iris %>% mutate_(.dots = exps) %>% tbl_df #> # A tibble: 150 × 7 #> Sepal.Length Sepal.Width Petal.Length Petal.Width Species zSL zSW #> <dbl> <dbl> <dbl> <dbl> <fctr> <dbl> <dbl> #> 1 5.1 3.5 1.4 0.2 setosa -0.90 1.02 #> 2 4.9 3.0 1.4 0.2 setosa -1.14 -0.13 #> 3 4.7 3.2 1.3 0.2 setosa -1.38 0.33 #> 4 4.6 3.1 1.5 0.2 setosa -1.50 0.10 #> 5 5.0 3.6 1.4 0.2 setosa -1.02 1.25 #> 6 5.4 3.9 1.7 0.4 setosa -0.54 1.93 #> 7 4.6 3.4 1.4 0.3 setosa -1.50 0.79 #> 8 5.0 3.4 1.5 0.2 setosa -1.02 0.79 #> 9 4.4 2.9 1.4 0.2 setosa -1.74 -0.36 #> 10 4.9 3.1 1.5 0.1 setosa -1.14 0.10 #> # ... with 140 more rows
To leave a comment for the author, please follow the link and comment on their blog: Higher Order Functions.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.