Site icon R-bloggers

Updated R & BLAS Timings

[This article was first published on R – Strange Attractors, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

With the recent releases of R 3.2.4 and OpenBLAS 2.17, I decided it was time to re-benchmark R speed. I’ve settled on a particular set of tests, based on my experience as well as some of Simon Urbanek’s work which I separated into two groups: those focusing on BLAS-heavy operations and those which do not. I’ve posted the code I use to its own page, but I’ll copy it below for convenience:

set.seed(4987)
library(microbenchmark)
library(Matrix)
A <- matrix(rnorm(1e6, 1e3, 1e2), ncol = 1e3)
B <- matrix(rnorm(1e6, 1e3, 1e2), ncol = 1e3)
A <- crossprod(A, A)
A <- A * 1000 / mean(A)
colnames(A) <- colnames(B) <- NULL
options(scipen=4, digits = 3)

BLAS <- microbenchmark(
    sort(c(as.vector(A), as.vector(B))),
	det(A),
    A %*% B,
	t(A) %*% B,
	crossprod(A, B),
	solve(A),
	solve(A, t(B)),
	solve(B),
	chol(A),
	chol(B, pivot = TRUE),
	qr(A, LAPACK = TRUE),
	svd(A),
	eigen(A, symmetric = TRUE),
	eigen(A, symmetric = FALSE),
	eigen(B, symmetric = FALSE),
	lu(A),
	fft(A),
	Hilbert(3000),
	toeplitz(A[1:500, 1]),
	princomp(A),
	times=25L, unit='ms', control = list(order = 'block')
)

NotBLAS <- microbenchmark(
	A + 2,
	A - 2,
	A * 2,
	A / 2,
	A * 0.5,
	A ^ 2,
	sqrt(A[1:10000]),
	sin(A[1:10000]),
	A + B,
	A - B,
	A * B,
	A / B,
	A[1:1e5] %% B[1:1e5],
	A[1:1e5] %/% B[1:1e5],
	times = 5000L, unit='ms', control = list(order = 'block')
)

My machine is a i7-2600K overclocked to 4.65Ghz with 16GB RAM, running Win7 64. I’ve also used RStudio Version 0.99.893 for each of these tests.

I ran the tests on four versions of R:

This time I was a bit wiser, and saved the results to RDS objects so that I could combine them into one R session and compare them. I’ll post the raw output at the bottom of the page, but I think it’s more intuitive to look at graphical comparisons. The takeaway is if you can install a fast BLAS! The other optimization options had minor effects, sometimes better sometimes worse, but using a fast BLAS made a significant difference. Adding a Platform variable to the four sets of BLAS and NotBLAS outputs and then combining them in one session allowed for the generation of comparison plots. The call for these graphs, for those following along at home, is:

ggplot(BLAS) + geom_boxplot(aes(y = time / 1e6, color = Platform, x = expr)) + scale_y_continuous(labels = comma) + ylab('milliseconds') + coord_flip()
ggplot(BLAS) + geom_jitter(aes(y = time / 1e6, color = Platform, x = expr), alpha = 0.3) + scale_y_continuous(labels = comma) + ylab('milliseconds') + coord_flip()
ggplot(NotBLAS) + geom_boxplot(aes(y = time / 1e6, color = Platform, x = expr)) + scale_y_continuous(labels = comma) + ylab('milliseconds') + coord_flip()

You may also have to right-click and sellect “View Image” to get a better picture. First is a boxplot comparison for the BLAS related functions:

As there are only 25 samples for each function, a jitter plot may be a bit simpler:

It is clear that just adding the BLAS makes a noticeable difference for matrix-related functionality. The other optimizations tend to provide some benefit, but nothing significant.

The non-BLAS related functions, understandably, don’t respond the same way to the BLAS. As I ran 5000 samples per expression, a jitter plot would not be that clear, even with a low alpha.

What is seen here, in my opinion, that using the local architecture sometimes improves performance, such as for division, and other retards it slightly, such as for sin and sqrt. I think the latter two depend on the optimization as well. Default R calls for -O3 for C code. The magnitude of the improvements seems to be greater than the change in those times where there is an impediment, at least when eyeballing the plot. If I recall from previous tests, strangely, it may be slightly more efficient to pass -mtune = native, at least for my test suite. I’m not sure why, as arch implies tune. I’d have to recompile R yet again to test it, though. Also, with 5000 iterations per expression, garbage collection has to be run on occasion, which accounts for those outlier points.

In summation, if you deal with heavy calculation in R, specifically matrix-related, you will notice significant speed improvement by replacing the vanilla Rblas.dll with a faster one. Compiling or tuning for a specific architecture may show some small increases, but does not return the same results.

While it’s actually easier now to compile OpenBLAS for R and in R on Windows, my instructions are a bit dated, and so I’ll have to update those eventually. I have considered hosting some pre-compiled Rblas files, as Dr. Ei-ji Nakama does, but I’ve held back for two reasons 1) I have to ensure I apply the proper licenses and 2) I’m a bit concerned about someone suing or the like if for whatever reason, a blas didn’t work properly. I have disclaimers and all, but you never know 8-).

In any event, I’m always interested in hearing comments about your experience with compiling R or a fast BLAS for Windows, and especially if you found any of my previous posts helpful. Thanks!

Raw Benchmark Output

R version 3.2.4 Revised (2016-03-16 r70336) (pure vanilla)
Unit: milliseconds

BLAS
                                  expr     Min      LQ  Median      UQ     Max    Mean    SD      CV     n
                                (fctr)   (dbl)   (dbl)   (dbl)   (dbl)   (dbl)   (dbl) (dbl)   (dbl) (int)
1  sort(c(as.vector(A), as.vector(B)))  264.56  266.56  267.13  270.50  327.81  270.39 12.15 0.04492    25
2                               det(A)  134.83  135.77  136.47  137.74  206.93  139.83 14.12 0.10095    25
3                              A %*% B  465.64  473.39  492.22  504.79  546.33  493.55 22.62 0.04583    25
4                           t(A) %*% B  468.96  501.26  506.00  535.00  564.67  514.08 24.71 0.04807    25
5                      crossprod(A, B)  737.52  746.47  759.38  768.71  813.29  762.19 18.66 0.02449    25
6                             solve(A)  607.80  615.18  621.48  639.45  679.81  628.14 18.80 0.02992    25
7                       solve(A, t(B))  847.49  853.39  855.29  859.28  881.07  858.57  8.89 0.01036    25
8                             solve(B)  617.06  621.25  622.45  624.65  683.30  625.33 12.56 0.02008    25
9                              chol(A)  116.61  117.19  117.40  118.45  123.19  118.46  1.99 0.01676    25
10               chol(B, pivot = TRUE)    2.38    2.45    2.52    2.59    6.91    3.15  1.51 0.48091    25
11                qr(A, LAPACK = TRUE)  423.32  424.46  425.25  426.35  432.92  425.62  2.07 0.00487    25
12                              svd(A) 2219.86 2242.51 2265.10 2294.88 2372.62 2277.14 45.47 0.01997    25
13          eigen(A, symmetric = TRUE)  939.63  946.36  952.16  963.85 1020.42  959.00 19.78 0.02063    25
14         eigen(A, symmetric = FALSE) 3623.95 3650.20 3657.46 3675.48 3740.09 3662.55 28.50 0.00778    25
15         eigen(B, symmetric = FALSE) 4072.00 4127.98 4175.12 4228.25 4344.13 4183.00 77.04 0.01842    25
16                               lu(A)  137.73  142.06  144.51  147.26  210.54  156.60 26.47 0.16901    25
17                              fft(A)  112.27  116.98  119.89  123.29  135.01  120.63  5.20 0.04308    25
18                       Hilbert(3000)  134.83  196.37  197.50  199.45  386.30  201.86 46.23 0.22905    25
19               toeplitz(A[1:500, 1])    4.92    5.06    5.09    5.45   10.49    5.80  1.72 0.29759    25
20                         princomp(A) 1834.20 1855.31 1903.78 1947.02 2127.45 1923.42 81.44 0.04234    25

NotBLAS
                        expr   Min    LQ Median    UQ   Max  Mean     SD    CV     n
                      (fctr) (dbl) (dbl)  (dbl) (dbl) (dbl) (dbl)  (dbl) (dbl) (int)
1                      A + 2 1.719 1.891  1.922 2.012 74.96 2.542 2.5880 1.018  5000
2                      A - 2 1.723 1.910  1.965 2.066 72.86 2.628 2.6389 1.004  5000
3                      A * 2 1.725 1.900  1.948 2.049 80.89 2.604 2.6526 1.019  5000
4                        A/2 3.014 3.162  3.179 3.205 74.44 3.776 2.5372 0.672  5000
5                    A * 0.5 1.718 1.884  1.908 1.971 74.80 2.538 2.5780 1.016  5000
6                        A^2 1.718 1.896  1.939 2.036 73.41 2.587 2.6111 1.009  5000
7           sqrt(A[1:10000]) 0.110 0.111  0.111 0.112  5.30 0.116 0.0833 0.717  5000
8            sin(A[1:10000]) 0.364 0.365  0.365 0.366  1.35 0.368 0.0429 0.117  5000
9                      A + B 1.306 1.384  1.448 1.542 68.83 1.582 1.8367 1.161  5000
10                     A - B 1.308 1.355  1.432 1.539 67.87 1.571 1.8412 1.172  5000
11                     A * B 1.310 1.410  1.471 1.571 69.73 1.610 1.8548 1.152  5000
12                       A/B 4.767 4.779  4.789 4.853 66.93 4.946 1.7605 0.356  5000
13  A[1:100000]%%B[1:100000] 2.528 2.544  2.558 2.583 65.80 2.639 1.2633 0.479  5000
14 A[1:100000]%/%B[1:100000] 2.271 2.296  2.318 2.370 65.33 2.423 1.2646 0.522  5000
----------
R version 3.2.4 Revised (2016-03-16 r70336) (pure vanilla)
With SandyBridge-specific OpenBLAS (2.17)
Unit: milliseconds

BLAS
                                  expr     Min      LQ  Median      UQ    Max    Mean    SD     CV     n
                                (fctr)   (dbl)   (dbl)   (dbl)   (dbl)  (dbl)   (dbl) (dbl)  (dbl) (int)
1  sort(c(as.vector(A), as.vector(B)))  264.10  265.06  265.77  266.93  323.4  268.39 11.52 0.0429    25
2                               det(A)   14.31   14.57   15.26   16.67   20.0   15.82  1.43 0.0903    25
3                              A %*% B   19.25   21.34   26.83   28.49   84.1   27.78 12.68 0.4563    25
4                           t(A) %*% B   26.46   30.04   32.20   38.76   43.6   34.25  5.37 0.1567    25
5                      crossprod(A, B)   17.63   21.14   22.82   27.48   35.5   24.68  5.10 0.2066    25
6                             solve(A)   40.67   45.92   49.58   51.48  107.1   51.29 12.37 0.2412    25
7                       solve(A, t(B))   46.32   50.88   51.63   56.40   63.2   53.00  4.24 0.0799    25
8                             solve(B)   47.09   51.22   51.72   56.44  118.6   56.32 13.71 0.2435    25
9                              chol(A)    6.59    6.65    6.77    7.01   10.6    7.38  1.39 0.1890    25
10               chol(B, pivot = TRUE)    2.36    2.47    2.50    2.58    6.8    3.25  1.58 0.4851    25
11                qr(A, LAPACK = TRUE)   70.19   71.59   72.47   74.69   79.1   72.96  2.22 0.0304    25
12                              svd(A)  375.74  378.56  389.32  415.33  444.7  399.66 26.19 0.0655    25
13          eigen(A, symmetric = TRUE)  171.72  175.04  176.94  177.97  239.8  179.80 13.20 0.0734    25
14         eigen(A, symmetric = FALSE)  849.09  859.77  872.76  891.57  915.7  876.86 20.89 0.0238    25
15         eigen(B, symmetric = FALSE) 1011.80 1065.85 1070.08 1075.52 1085.1 1065.76 18.14 0.0170    25
16                               lu(A)   17.91   18.91   20.78   22.62   82.8   32.68 25.43 0.7782    25
17                              fft(A)  110.52  111.17  113.16  113.34  113.8  112.33  1.18 0.0105    25
18                       Hilbert(3000)  128.99  194.32  194.70  195.01  377.4  196.80 45.44 0.2309    25
19               toeplitz(A[1:500, 1])    4.77    4.96    5.03    5.04   10.0    5.58  1.64 0.2937    25
20                         princomp(A)  285.96  302.37  316.33  329.08  400.5  322.00 29.13 0.0905    25

NotBLAS
                        expr   Min    LQ Median    UQ   Max  Mean     SD    CV     n
                      (fctr) (dbl) (dbl)  (dbl) (dbl) (dbl) (dbl)  (dbl) (dbl) (int)
1                      A + 2 1.712 1.887  1.904 1.938 72.64 2.514 2.6240 1.044  5000
2                      A - 2 1.723 1.893  1.913 1.962 68.52 2.540 2.5268 0.995  5000
3                      A * 2 1.721 1.894  1.918 1.974 68.97 2.543 2.5326 0.996  5000
4                        A/2 3.016 3.173  3.192 3.229 73.36 3.804 2.5315 0.665  5000
5                    A * 0.5 1.724 1.900  1.939 2.049 73.70 2.590 2.6048 1.006  5000
6                        A^2 1.722 1.890  1.910 1.974 71.55 2.543 2.5479 1.002  5000
7           sqrt(A[1:10000]) 0.110 0.111  0.111 0.112  5.59 0.116 0.0876 0.753  5000
8            sin(A[1:10000]) 0.364 0.365  0.366 0.366  1.32 0.370 0.0408 0.110  5000
9                      A + B 1.310 1.336  1.378 1.447 62.35 1.512 1.7318 1.146  5000
10                     A - B 1.310 1.345  1.411 1.491 63.70 1.542 1.7465 1.133  5000
11                     A * B 1.312 1.349  1.421 1.501 65.96 1.550 1.7753 1.145  5000
12                       A/B 4.766 4.781  4.804 4.959 73.53 4.992 1.8146 0.364  5000
13  A[1:100000]%%B[1:100000] 2.526 2.541  2.550 2.591 63.56 2.638 1.2305 0.467  5000
14 A[1:100000]%/%B[1:100000] 2.272 2.294  2.310 2.361 66.49 2.399 1.2681 0.529  5000
----------
R version 3.2.4 Patched (2016-03-28 r70390) -- "Very Secure Dishes"
Compiled with -march=native
With SandyBridge-specific OpenBLAS (2.17)

BLAS
                                  expr    Min      LQ  Median      UQ     Max    Mean    SD     CV     n
                                (fctr)  (dbl)   (dbl)   (dbl)   (dbl)   (dbl)   (dbl) (dbl)  (dbl) (int)
1  sort(c(as.vector(A), as.vector(B))) 266.79  267.24  268.46  271.46  329.37  272.04 12.36 0.0454    25
2                               det(A)  14.24   14.43   15.12   16.94   18.63   15.69  1.43 0.0911    25
3                              A %*% B  20.95   24.25   28.79   31.89   34.96   28.26  4.21 0.1490    25
4                           t(A) %*% B  26.70   29.53   33.74   41.83  103.68   39.71 18.48 0.4652    25
5                      crossprod(A, B)  17.65   19.46   28.94   31.99   36.97   26.53  6.56 0.2474    25
6                             solve(A)  41.47   45.97   49.44   52.75   56.85   49.38  4.19 0.0849    25
7                       solve(A, t(B))  46.34   51.00   53.22   55.86  113.34   55.53 12.45 0.2242    25
8                             solve(B)  47.90   52.74   54.88   57.05  126.30   58.01 15.05 0.2595    25
9                              chol(A)   6.57    6.72    6.93    7.43   12.90    7.74  1.84 0.2377    25
10               chol(B, pivot = TRUE)   2.37    2.47    2.49    2.53    6.26    3.22  1.53 0.4755    25
11                qr(A, LAPACK = TRUE)  70.84   71.54   73.10   74.91   78.28   73.59  2.19 0.0298    25
12                              svd(A) 375.93  384.60  399.36  454.94  563.73  421.43 49.29 0.1170    25
13          eigen(A, symmetric = TRUE) 170.29  174.23  177.88  185.33  244.08  182.23 14.50 0.0796    25
14         eigen(A, symmetric = FALSE) 839.89  851.24  861.85  874.42  961.61  870.93 31.10 0.0357    25
15         eigen(B, symmetric = FALSE) 985.55 1045.25 1097.99 1142.28 1200.26 1093.09 56.17 0.0514    25
16                               lu(A)  18.25   20.03   21.52   23.14   91.58   34.15 27.10 0.7936    25
17                              fft(A) 106.88  110.80  112.50  119.96  132.55  115.51  6.66 0.0576    25
18                       Hilbert(3000) 133.10  197.69  201.83  204.57  411.96  205.26 50.69 0.2470    25
19               toeplitz(A[1:500, 1])   5.04    5.20    5.35    5.49   10.66    5.94  1.65 0.2773    25
20                         princomp(A) 326.08  336.14  341.65  349.99  425.50  354.56 31.37 0.0885    25

NotBLAS
                        expr   Min    LQ Median    UQ   Max  Mean     SD     CV     n
                      (fctr) (dbl) (dbl)  (dbl) (dbl) (dbl) (dbl)  (dbl)  (dbl) (int)
1                      A + 2 1.731 1.890  1.911 1.956 73.12 2.538 2.6108 1.0286  5000
2                      A - 2 1.726 1.884  1.903 1.943 70.36 2.527 2.5691 1.0168  5000
3                      A * 2 1.727 1.891  1.910 1.945 70.49 2.531 2.5708 1.0156  5000
4                        A/2 2.040 2.193  2.210 2.236 71.35 2.816 2.5552 0.9075  5000
5                    A * 0.5 1.726 1.902  1.939 2.016 74.95 2.591 2.6501 1.0227  5000
6                        A^2 1.727 1.886  1.907 1.966 71.32 2.541 2.5889 1.0188  5000
7           sqrt(A[1:10000]) 0.509 0.516  0.516 0.517  4.36 0.521 0.0670 0.1285  5000
8            sin(A[1:10000]) 0.715 0.720  0.721 0.722  1.72 0.725 0.0416 0.0573  5000
9                      A + B 1.331 1.356  1.378 1.459 65.85 1.522 1.8010 1.1831  5000
10                     A - B 1.331 1.357  1.383 1.461 64.68 1.527 1.7970 1.1765  5000
11                     A * B 1.332 1.354  1.372 1.431 65.46 1.513 1.8009 1.1905  5000
12                       A/B 2.412 2.423  2.432 2.460 68.39 2.580 1.8492 0.7168  5000
13  A[1:100000]%%B[1:100000] 2.917 2.999  3.005 3.027 67.03 3.084 1.2797 0.4150  5000
14 A[1:100000]%/%B[1:100000] 2.683 2.759  2.769 2.816 67.74 2.861 1.2999 0.4543  5000
----------
R version 3.2.4 Patched (2016-03-28 r70390) -- "Very Secure Dishes"
Compiled with -march=native and partial LTO (R core, blas, and lapack only)
With SandyBridge-specific OpenBLAS (2.17)

BLAS
                                  expr    Min     LQ  Median      UQ     Max    Mean    SD     CV     n
                                (fctr)  (dbl)  (dbl)   (dbl)   (dbl)   (dbl)   (dbl) (dbl)  (dbl) (int)
1  sort(c(as.vector(A), as.vector(B))) 263.84 265.83  266.39  268.22  323.52  269.49 11.48 0.0426    25
2                               det(A)  16.55  17.15   17.72   19.73   23.69   18.55  1.82 0.0982    25
3                              A %*% B  19.55  21.52   25.02   33.33   96.59   29.20 15.17 0.5195    25
4                           t(A) %*% B  27.71  33.26   35.59   38.03   45.20   35.47  4.33 0.1220    25
5                      crossprod(A, B)  17.81  21.49   25.98   28.99   34.36   25.94  4.49 0.1730    25
6                             solve(A)  48.38  51.94   54.40   57.04  112.31   56.72 12.03 0.2122    25
7                       solve(A, t(B))  54.93  56.65   60.59   63.24   72.91   61.05  5.25 0.0859    25
8                             solve(B)  55.50  58.85   60.88   62.99  121.31   63.46 12.50 0.1969    25
9                              chol(A)   8.57   8.69    8.80    8.98   12.21    9.40  1.28 0.1361    25
10               chol(B, pivot = TRUE)   2.35   2.44    2.51    2.62    6.87    3.18  1.60 0.5035    25
11                qr(A, LAPACK = TRUE)  71.16  72.38   73.57   74.85   83.43   74.41  2.93 0.0393    25
12                              svd(A) 376.02 380.71  392.98  437.93  490.97  407.28 34.08 0.0837    25
13          eigen(A, symmetric = TRUE) 173.96 176.57  179.35  181.38  259.73  183.29 16.79 0.0916    25
14         eigen(A, symmetric = FALSE) 852.68 856.26  860.10  864.31  926.66  865.16 16.63 0.0192    25
15         eigen(B, symmetric = FALSE) 987.24 993.14 1001.10 1020.62 1079.71 1010.79 24.32 0.0241    25
16                               lu(A)  19.18  20.01   21.76   24.21   26.51   22.11  2.44 0.1103    25
17                              fft(A) 106.65 107.09  108.58  110.35  116.92  108.98  2.36 0.0216    25
18                       Hilbert(3000) 125.60 191.73  192.18  194.44  314.63  195.15 33.81 0.1732    25
19               toeplitz(A[1:500, 1])   4.99   5.18    5.21    5.24   10.22    5.79  1.62 0.2801    25
20                         princomp(A) 285.97 296.12  300.58  317.75  370.74  315.50 30.97 0.0982    25

NotBLAS
                        expr   Min    LQ Median    UQ   Max  Mean     SD     CV     n
                      (fctr) (dbl) (dbl)  (dbl) (dbl) (dbl) (dbl)  (dbl)  (dbl) (int)
1                      A + 2 1.828 1.995  2.022 2.091 74.52 2.615 2.4756 0.9468  5000
2                      A - 2 1.807 1.973  1.995 2.064 70.60 2.636 2.5624 0.9721  5000
3                      A * 2 1.827 1.991  2.009 2.054 71.57 2.637 2.5618 0.9714  5000
4                        A/2 2.147 2.293  2.309 2.335 68.18 2.912 2.4859 0.8537  5000
5                    A * 0.5 1.817 1.990  2.007 2.049 68.35 2.628 2.5134 0.9564  5000
6                        A^2 1.795 1.964  1.980 2.011 67.96 2.596 2.5082 0.9660  5000
7           sqrt(A[1:10000]) 0.531 0.535  0.536 0.536  2.51 0.540 0.0474 0.0878  5000
8            sin(A[1:10000]) 0.719 0.726  0.726 0.727  1.70 0.728 0.0413 0.0566  5000
9                      A + B 1.326 1.355  1.391 1.545 66.25 1.690 1.8104 1.0713  5000
10                     A - B 1.321 1.365  1.437 1.602 68.45 1.726 1.8618 1.0788  5000
11                     A * B 1.327 1.366  1.439 1.586 63.71 1.719 1.8044 1.0499  5000
12                       A/B 2.435 2.463  2.530 2.560 65.87 2.804 1.8057 0.6439  5000
13  A[1:100000]%%B[1:100000] 2.987 3.002  3.007 3.025 63.89 3.092 1.2231 0.3956  5000
14 A[1:100000]%/%B[1:100000] 2.718 2.732  2.736 2.745 63.70 2.809 1.2202 0.4344  5000

The post Updated R & BLAS Timings appeared first on Strange Attractors.

To leave a comment for the author, please follow the link and comment on their blog: R – Strange Attractors.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.