[This article was first published on You Know, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
PNG images are essentially a grid of values that represent colors to display. Since each cell in the grid is made up of numbers, I got curious about what it might mean to aggregate multiple PNGs. What would it look like to average two or more images? Median? Mode? Random?
To do so, I pulled the top 100 brands’ logos from Best Global Brands.
Then I used the (layers of) values as inputs to aggregate in various ways.
Averaging these logos yields this gray blob that looks roughly, well, saturnine.
Taking the median value results in what looks like a messy paintbrush stroke.
The mode reflects the heavy use of black.
The random one looks galactic! I like it the most…
Clearly, there is quite the uniformity in the logo design. Both horizontal and vertical symmetry are present. There is a bias towards a wider shape, similar to the dimensions of a word. Also, three general shapes tend to appear: a perfect square, a perfect circle, and the long rectangle.
Is there one agency that designed most of these? They have so much in common.
Below is the R code. It is long because it reflects the evolution of my thought process. A dash of apply could speed up the explicit naming.
1: 2: # Prepare ----------------------------------------------------------------- 3: rm(list=ls());gc() 4: pkg <- c("RCurl","XML","png","data.table","reshape","grid") 5: inst <- pkg %in% installed.packages() 6: if(length(pkg[!inst]) > 0) install.packages(pkg[!inst]) 7: lapply(pkg,library,character.only=TRUE) 8: rm(inst,pkg) 9: setwd("your folder here") 10: set.seed(4444) 11: 12: 13: # Download HTML ----------------------------------------------------------- 14: doc <- htmlParse("http://interbrand.com/best-brands/best-global-brands/2015/ranking/", 15: encoding="UTF-8") 16: 17: 18: # Parse HTML for image sources and info ---------------------------------- 19: plain.src <- xpathApply(doc,"//img[@class='logo-img']",xmlGetAttr,"src") 20: plain.alt <- xpathApply(doc,"//img[@class='logo-img']",xmlGetAttr,"alt") 21: 22: plain.rank <- xpathApply(doc,"//div[@class='brand-info brand-rank brand-col-1']", 23: xmlGetAttr,"title") 24: plain.region <- xpathApply(doc,"//div[@class='brand-info brand-region']", 25: xmlGetAttr,"title") 26: plain.country <- xpathApply(doc,"//div[@class='brand-info brand-country brand-col-5']", 27: xmlGetAttr,"title") 28: plain.sector <- xpathApply(doc,"//div[@class='brand-info brand-sector brand-col-6']", 29: xmlGetAttr,"title") 30: plain.value <- xpathApply(doc,"//div[@class='brand-info brand-value brand-col-7']", 31: xmlGetAttr,"title") 32: 33: 34: # Compile info ------------------------------------------------------------ 35: d0 <- data.frame(Rank=unlist(plain.rank), 36: Country=unlist(plain.country), 37: Region=unlist(plain.region), 38: Sector=unlist(plain.sector), 39: Value=unlist(plain.value), 40: stringsAsFactors=FALSE) 41: 42: d0$Rank <- gsub("Rank: ","",d0$Rank) 43: d0$Rank <- as.numeric(d0$Rank) 44: d0$Country <- gsub("Country: ","",d0$Country) 45: d0$Region <- gsub("Region: ","",d0$Region) 46: d0$Sector <- gsub("Sector: ","",d0$Sector) 47: d0$Value <- gsub("Value: ","",d0$Value) 48: d0$Value <- gsub("[^0-9]","",d0$Value) 49: d0$Value <- as.numeric(d0$Value)*1000000 50: 51: 52: # Download images --------------------------------------------------------- 53: n <- length(plain.src) 54: for(i in 1:n) { 55: if(!file.exists(paste0("Rank",d0$Rank[i],".png"))) { 56: download.file(paste0("http://interbrand.com",plain.src[[i]]), 57: destfile=paste0("Rank",d0$Rank[i],".png"),mode="wb") 58: Sys.sleep(0.1) 59: } 60: } 61: 62: 63: # Read in logo PNGs ------------------------------------------------------- 64: for(i in 1:n) { 65: assign(paste0("Rank",d0$Rank[i]),readPNG(paste0("Rank",d0$Rank[i],".png"))) 66: } 67: dims <- dim(Rank1) 68: 69: 70: # Combine arrays ---------------------------------------------------------- 71: d1 <- vector() 72: for(i in 1:n) { 73: d1 <- c(d1,as.vector(get(ls()[grep(pattern="Rank.*",x=ls())][i]))) 74: } -75: a1 <- array(d1,c(dims,n)) 76: 77: 78: # Clean up environment ---------------------------------------------------- 79: rm(list=ls()[!ls() %in% c("d1","a1","n","dims")]) 80: 81: 82: # Get element-wise metrics ----------------------------------------------- 83: logo1.avg <- apply(a1,1:3,mean) 84: logo1.med <- apply(a1,1:3,median) 85: logo1.mod <- apply(a1,1:3,function(x) unique(x)[which.max(tabulate(match(x,unique(x))))]) 86: logo1.ran <- apply(a1,1:3,sample,1) 87: 88: 89: # Display results --------------------------------------------------------- 90: grid.raster(logo1.avg) 91: dev.off() 92: grid.raster(logo1.med) 93: dev.off() 94: grid.raster(logo1.mod) 95: dev.off() 96: grid.raster(logo1.ran) 97: dev.off() 98: 99:
To leave a comment for the author, please follow the link and comment on their blog: You Know.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.