Reproducibility in computational research
[This article was first published on Hyndsight » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Jane Frazier spoke at our research team meeting today on “Reproducibility in computational research”. We had a very stimulating and lively discussion about the issues involved. One interesting idea was that reproducibility is on a scale, and we can all aim to move further along the scale towards making our own research more reproducible. For example
- Can you reproduce your results tomorrow on the same computer with the same software installed?
- Could someone else on a different computer reproduce your results with the same software installed?
- Could you reproduce your results in 3 years time after some of your software environment may have changed?
- etc.
Think about what changes you need to make to move one step further along the reproducibility continuum, and do it.
Jane’s slides and handout are below.
Slides:
Handout:
To leave a comment for the author, please follow the link and comment on their blog: Hyndsight » R.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.