Site icon R-bloggers

I loved this %>% crosstable

[This article was first published on » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

This is a public tank you for @heatherturner’s contribution. Now the SciencesPo’s crosstable can work in a chain (%>%) fashion; useful for using along with other packages that have integrated the magrittr operator.

     > candidatos %>%
     + filter(desc_cargo == 'DEPUTADO ESTADUAL'| 
desc_cargo =='DEPUTADO DISTRITAL' | desc_cargo =='DEPUTADO FEDERAL' | 
desc_cargo =='VEREADOR' | desc_cargo =='SENADOR') %>% 
tab(desc_cargo,desc_sexo)

====================================================
                           desc_sexo                
                   -------------------------        
desc_cargo             NA   FEMININO MASCULINO  Total 
----------------------------------------------------
DEPUTADO DISTRITAL      1     826      2457     3284
                    0.03%     25%       75%     100%
DEPUTADO ESTADUAL     122   12595     48325    61042
                    0.20%     21%       79%     100%
DEPUTADO FEDERAL       40    5006     20176    25222
                    0.16%     20%       80%     100%
SENADOR                 4     161      1002     1167
                    0.34%     14%       86%     100%
VEREADOR             9682  376576   1162973  1549231
                    0.62%     24%       75%     100%
----------------------------------------------------
Total                9849  395164   1234933  1639946
                    0.60%     24%       75%     100%
====================================================

Chi-Square Test for Independence

Number of cases in table: 1639946 
Number of factors: 2 
Test for independence of all factors:
    Chisq = 1077.4, df = 8, p-value = 2.956e-227
                    X^2 df P(> X^2)
Likelihood Ratio 1216.0  8        0
Pearson          1077.4  8        0

Phi-Coefficient   : 0.026 
Contingency Coeff.: 0.026 
Cramer's V        : 0.018 

# Reproducible example:

library(SciencesPo)

 gender = rep(c("female","male"),c(1835,2691))
    admitted = rep(c("yes","no","yes","no"),c(557,1278,1198,1493))
    dept = rep(c("A","B","C","D","E","F","A","B","C","D","E","F"),
               c(89,17,202,131,94,24,19,8,391,244,299,317))
    dept2 = rep(c("A","B","C","D","E","F","A","B","C","D","E","F"),
               c(512,353,120,138,53,22,313,207,205,279,138,351))
    department = c(dept,dept2)
    ucb = data.frame(gender,admitted,department)


> ucb %>% tab(admitted, gender, department)
================================================================
                                 department                       
                  -----------------------------------------       
admitted gender   A      B      C      D      E      F    Total 
----------------------------------------------------------------
no       female     19      8    391    244    299    317   1278
                  1.5%  0.63%    31%    19%  23.4%    25%   100%
         male      313    207    205    279    138    351   1493
                 21.0% 13.86%    14%    19%   9.2%    24%   100%
         -------------------------------------------------------
         Total     332    215    596    523    437    668   2771
                 12.0%  7.76%    22%    19%  15.8%    24%   100%
----------------------------------------------------------------
yes      female     89     17    202    131     94     24    557
                   16%   3.1%    36%    24%  16.9%   4.3%   100%
         male      512    353    120    138     53     22   1198
                   43%  29.5%    10%    12%   4.4%   1.8%   100%
         -------------------------------------------------------
         Total     601    370    322    269    147     46   1755
                   34%  21.1%    18%    15%   8.4%   2.6%   100%
----------------------------------------------------------------
Total    female    108     25    593    375    393    341   1835
                  5.9%   1.4%    32%    20%  21.4%    19%   100%
         male      825    560    325    417    191    373   2691
                 30.7%  20.8%    12%    15%   7.1%    14%   100%
         -------------------------------------------------------
         Total     933    585    918    792    584    714   4526
                 20.6%  12.9%    20%    17%  12.9%    16%   100%
================================================================

To leave a comment for the author, please follow the link and comment on their blog: » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.