Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
“Given the notorious intractability of the synoptic problem and the number of different models that are still being advocated, none of them without its deficiencies in explaining the relationships between the synoptic gospels, it should not be surprising that we are unable to come up with more definitive conclusions.” (p.181)
The book by Abakuks goes instead through several modelling directions, from logistic regression using variable length Markov chains [to predict agreement between two of the three texts by regressing on earlier agreement] to hidden Markov models [representing, e.g., Matthew’s use of Mark], to various independence tests on contingency tables, sometimes bringing into the model an extra source denoted by Q. Including some R code for hidden Markov models. Once again, from my outsider viewpoint, this fragmented approach to the problem sounds problematic and inconclusive. And rather verbose in extensive discussions of descriptive statistics. Not that I was expecting a sudden Monty Python-like ray of light and booming voice to disclose the truth! Or that I crave for more p-values (some may be found hiding within the book). But I still wonder about the phylogeny… Especially since phylogenies are used in text authentication as pointed out to me by Robin Ryder for Chauncer’s Canterbury Tales.
Filed under: Books, R, Statistics, University life, Wines Tagged: ABC, Andris Abakuks, author identification, Bible studies, CHANCE, Geoffrey Chauncer, hidden Markov models, linguistics, Monty Python, New Testament, phylogenetic model, synoptic gospel, University of Canterbury
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.