Tips & Tricks 6: Exploring Data for Outliers
[This article was first published on geomorph, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Geomorph users,Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
A new function in geomorph 2.1.3 allows the user to explore Procrustes superimposed data for outliers (plotOutliers). Here I shall provide a few example for loops to demonstrate how you can explore your data for outliers prior to analyses.
1) plotTangentSpace to visualise aberrant individuals
To label all the individuals in the biplot so strong outliers can be identified:
plotTangentSpace(coords, labels = dimnames(coords)[[3]])#
If your data has group structure (e.g. species), make a factor for this grouping variable then you can plot each level at a time using:
for(i in levels(group)){
plotTangentSpace(coords[,,which(group == i)],
label = dimnames(coords)[[3]][which(group == i)])}
2) plotOutliers to find outliers by ordering individuals by their distance from the mean
outliers <- plotOutliers(coords)
If you have a lot of specimens, make a PDF of all specimens plotted as vector shape change graphs:
outliers <- plotOutliers(coords)
pdf(“AllSpecimens.pdf”)
for(i in 1:length(outliers)){ plotRefToTarget(mshape(coords), coords[,,outliers[i]],
method=”vector”, label = T) title(names(outliers[i]))}
dev.off()
If your data has group structure, make a factor for this grouping variable then you can examine outliers for each level at a time using:
for(i in levels(group)){
outliers <- plotOutliers(coords[,, which(group == i)])
title(i) }
Combining these two makes a PDF for each level in the group with the summary graph and the shape change graphs:
for(i in levels(group)){
outliers <- plotOutliers(coords[,, which(group == i)])
title(i)
pdfname <- paste(i, ".pdf", sep="")
pdf(pdfname)
plotOutliers(coords[,, which(group == i)])
for(j in 1:length(outliers)){
plotRefToTarget(mshape(coords), coords[,,outliers[j]], method=”vector”, label = T)
title(names(outliers[j]))
}
dev.off()
}
Emma
To leave a comment for the author, please follow the link and comment on their blog: geomorph.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.