[This article was first published on Data Analysis and Visualization in R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Aside from code samples (even for R beginners) which include additional comments, there is also an online tutorial on Structural Equation Modeling included in the book webpage which make the book content easier to learn. In addition, the book also extends discussion beyond the methodological aspect of using R in scientific computing by providing technical and practical approach in some of the methodologies (e.g. “choosing the number of components to retain in Principal Component Analysis”, “Rasch analysis using linear algebra and a
paired comparisons matrix”, “Exploratory factor analysis and reflective
constructs”).
Highly recommended book!
To leave a comment for the author, please follow the link and comment on their blog: Data Analysis and Visualization in R.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.