Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Win-Vector LLC’s Nina Zumel and John Mount are proud to announce their new data science video course Introduction to Data Science is now available on Udemy.
We designed the course as an introduction to an advanced topic. The course description is:
Use the R Programming Language to execute data science projects and become a data scientist. Implement business solutions, using machine learning and predictive analytics.
The R language provides a way to tackle day-to-day data science tasks, and this course will teach you how to apply the R programming language and useful statistical techniques to everyday business situations.
With this course, you’ll be able to use the visualizations, statistical models, and data manipulation tools that modern data scientists rely upon daily to recognize trends and suggest courses of action.
Understand Data Science to Be a More Effective Data Analyst
- Use R and RStudio
- Master Modeling and Machine Learning
- Load, Visualize, and Interpret Data
Use R to Analyze Data and Come Up with Valuable Business Solutions
This course is designed for those who are analytically minded and are familiar with basic statistics and programming or scripting. Some familiarity with R is strongly recommended; otherwise, you can learn R as you go.
You’ll learn applied predictive modeling methods, as well as how to explore and visualize data, how to use and understand common machine learning algorithms in R, and how to relate machine learning methods to business problems.
All of these skills will combine to give you the ability to explore data, ask the right questions, execute predictive models, and communicate your informed recommendations and solutions to company leaders.
Contents and Overview
This course begins with a walk-through of a template data science project before diving into the R statistical programming language.
You will be guided through modeling and machine learning. You’ll use machine learning methods to create algorithms for a business, and you’ll validate and evaluate models.
You’ll learn how to load data into R and learn how to interpret and visualize the data while dealing with variables and missing values. You’ll be taught how to come to sound conclusions about your data, despite some real-world challenges.
By the end of this course, you’ll be a better data analyst because you’ll have an understanding of applied predictive modeling methods, and you’ll know how to use existing machine learning methods in R. This will allow you to work with team members in a data science project, find problems, and come up solutions.
You’ll complete this course with the confidence to correctly analyze data from a variety of sources, while sharing conclusions that will make a business more competitive and successful.
The course will teach students how to use existing machine learning methods in R, but will not teach them how to implement these algorithms from scratch. Students should be familiar with basic statistics and basic scripting/programming.
The course has a different emphasis than our book Practical Data Science with R and does not require the book.
Most of the course materials are freely available from GitHub in the form of pre-prepared knitr workbooks.
Related posts:
- A bit of the agenda of Practical Data Science with R
- How does Practical Data Science with R stand out?
- Data Science, Machine Learning, and Statistics: what is in a name?
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.