Site icon R-bloggers

rClr 0.7-3 released

[This article was first published on j-m's blog on R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Version 0.7-3 of rClr (source code also on GitHub), a package to access arbitrary .NET code seamlessly in-process, has just been released. The package was first introduced a year and a half ago in another blog post, and you can skim through that prior post to get an overview of the capabilities. This post will summarise newer features.



A lot has happened technologically to enable this release. The library R.NET has evolved and been through several rounds of fixes, runtime performance improvements, and refactoring. It is now the prefered subsystem in rClr to handle data conversion, and is active by default.

An overview of the improvements since the release series 0.5.x is:

Roadmap

Some developments are reshaping the landscape of the .NET world. Most of the .NET stack is now being genuinely open sourced. Closer to the R community is the recent announcement of Revolution Analytics joining Microsoft. It is likely that a more open sourced .NET stack will greatly facilitate new features for rClr. I have no insight as to Revolution Analytics, but hope rClr has a role to play and will seek collaboration or advice.

Aside from this changing broader context, some things to tackle are:

Related work

A few packages using rClr are publicly accessible, and may be of interest if you want to build your own package with dependencies on rClr.




To leave a comment for the author, please follow the link and comment on their blog: j-m's blog on R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.