Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
I use mix models as a way to find general patterns integrating different levels of information (i.e. the random effects). Sometimes you only want to focus on the general effects, but others the variation among levels is also of interest. If this is the case, using a random slope model is pretty cool, but making sense of lmer output is not trivial. I provide here code to get the random slopes and CI’s of such models using the iris dataset in R (mainly, because I am sure I will need to check this entry in the future myself)
#This shows how to get the random slopes and CI's for each level in a hierarchical model
Is there a general relationship between petal and sepal width? and how it differs by species?
plot(iris$Sepal.Width ~ iris$Petal.Width, col = iris$Species, las =1 #Our model with random slope and intercept library(lmer) m2 <- lmer(data = iris, Sepal.Width ~ Petal.Width + (1 + Petal.Width|Species)) #extract fixed effects a=fixef(m2) #extract random effects b=ranef(m2, condVar=TRUE) # Extract the variances of the random effects qq <- attr(b[[1]], "postVar") e=(sqrt(qq)) e=e[2,2,] #here we want to access the Petal.Weigth, which is stored in column 2 in b[[1]], that's why I use the [,2,2] #calculate CI's liminf=(b[[1]][2]+a[2])-(e*2) mean_=(b[[1]][2]+a[2]) limsup=(b[[1]][2]+a[2])+(e*2) #Plot betas and its errors dotchart(mean_$Petal.Width, labels = rownames(mean_), cex = 0.5, xlim = c(0.4,1.4), xlab = "betas") #add CI's... for (i in 1:nrow(mean_)){ lines(x = c(liminf[i,1], limsup[i,1]), y = c(i,i)) } #make final plot plot(iris$Sepal.Width ~ iris$Petal.Width, col = iris$Species, las = 1) #and plot each random slope abline(a = b[[1]][1,1]+a[1], b= mean_$Petal.Width[1], col = "black") abline(a = b[[1]][2,1]+a[1], b= mean_$Petal.Width[2], col = "red") abline(a = b[[1]][3,1]+a[1], b= mean_$Petal.Width[3], col = "green") #and general response abline(a, lty = 2)
The code is fast and dirty, I know I can be more consistent, and the plot can be nicer (clip the slopes, add SE’s), but will work to get the idea.
& thanks to Lucas Garibaldi for sharing much of this knowledge with me.
And the gist: https://gist.github.com/ibartomeus/f493bf142073c704391b
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.