[This article was first published on "R" you ready?, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
We teach two software packages, R and SPSS, in Quantitative Methods 101 for psychology freshman at Bremen University (Germany). Sometimes confusion arises, when the software packages produce different results. This may be due to specifics in the implemention of a method or, as in most cases, to different default settings. One of these situations occurs when the QQ-plot is introduced. Below we see two QQ-plots, produced by SPSS and R, respectively. The data used in the plots were generated by:
set.seed(0)
x <- sample(0:9, 100, rep=T)
SPSS
R
qqnorm(x, datax=T) # uses Blom's method by default
qqline(x, datax=T)
There are some obvious differences:
The most obvious one is that the R plot seems to contain more data points than the SPSS plot. Actually, this is not the case. Some data points are plotted on top of each in SPSS while they are spread out vertically in the R plot. The reason for this difference is that SPSS uses a different approach assigning probabilities to the values. We will expore the two approaches below.
The scaling of the y-axis differs. R uses quantiles from the standard normal distribution. SPSS by default rescales these values using the mean and standard deviation from the original data. This allows to directly compare the original and theoretical values. This is a simple linear transformation and will not be explained any further here.
The QQ-lines are not identical. R uses the 1st and 3rd quartile from both distributions to draw the line. This is different in SPSS where of a line is drawn for identical values on both axes. We will expore the differences below.
QQ-plots from scratch
To get a better understanding of the difference we will build the R and SPSS-flavored QQ-plot from scratch.
R type
In order to calculate theoretical quantiles corresponding to the observed values, we first need to find a way to assign a probability to each value of the original data. A lot of different approaches exist for this purpose (for an overview see e.g. Castillo-Gutiérrez, Lozano-Aguilera, & Estudillo-Martínez, 2012b). They usually build on the ranks of the observed data points to calculate corresponding p-values, i.e. the plotting positions for each point. The qqnorm function uses two formulae for this purpose, depending on the number of observations (Blom’s mfethod, see ?qqnorm; Blom, 1958). With being the rank, for