[This article was first published on Wiekvoet, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
This is the last post of testing Laplaces Demon algorithms. In the last algorithms there are some which are completely skipped because they are not suitable for the problem. Reversible Jump is for variable selection. Sequential Metropolis-within-Gibbs, Updating Sequential Metropolis-within-Gibbs and their adaptive versions are for state space models. Stochastic Gradient Langevin Dynamics is for big data. Having these algorithms does show that Laplaces Demon is a versatile package.Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Refractive
This algorithm has only one step size parameter. Since the two model parameters have such a different scale, this effects the parameters to have totally different behavior. One parameter, beta1, has loads of space, wanders around. The other parameter, beta2, has a clear location, with spikes sticking out both p and down. Since the two parameters are correlated, there is still some additional drift in beta2. In terms of beta1, I can agree that the current sampling should have a higher thinning and hence a longer run.Call:
LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values,
Algorithm = “Refractive”, Specs = list(Adaptive = 1, m = 3,
w = 0.001, r = 1.3))
Acceptance Rate: 0.6534
Algorithm: Refractive Sampler
Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
beta[1] beta[2]
0.4844556519 0.0005970499
Covariance (Diagonal) History: (NOT SHOWN HERE)
Deviance Information Criterion (DIC):
All Stationary
Dbar 47.838 46.571
pD 134.976 21.179
DIC 182.814 67.750
Initial Values:
[1] -10 0
Iterations: 10000
Log(Marginal Likelihood): NA
Minutes of run-time: 0.14
Model: (NOT SHOWN HERE)
Monitor: (NOT SHOWN HERE)
Parameters (Number of): 2
Posterior1: (NOT SHOWN HERE)
Posterior2: (NOT SHOWN HERE)
Recommended Burn-In of Thinned Samples: 800
Recommended Burn-In of Un-thinned Samples: 8000
Recommended Thinning: 30
Specs: (NOT SHOWN HERE)
Status is displayed every 100 iterations
Summary1: (SHOWN BELOW)
Summary2: (SHOWN BELOW)
Thinned Samples: 1000
Thinning: 10
Summary of All Samples
Mean SD MCSE ESS LB Median
beta[1] -10.8567577 0.6958495 0.233356594 1.824355 -12.1380065 -10.5879640
beta[2] 0.2679953 0.0229309 0.001917826 5.662208 0.2274266 0.2643966
Deviance 47.8375772 16.4302426 0.561644688 902.729104 42.5294569 44.1778224
LP -32.7236336 8.2147402 0.280765300 902.836669 -45.3216193 -30.8908909
UB
beta[1] -9.9915826
beta[2] 0.3122168
Deviance 73.0419916
LP -30.0712861
Summary of Stationary Samples
Mean SD MCSE ESS LB Median
beta[1] -11.9782481 0.15233913 0.073922711 4.501243 -12.2286033 -12.0057957
beta[2] 0.2968389 0.01324154 0.001397488 148.697808 0.2708737 0.2966517
Deviance 46.5714377 6.50825601 0.610732523 200.000000 42.5613730 44.0793108
LP -32.1031461 3.25402458 0.280765300 200.000000 -42.0542422 -30.8570180
UB
beta[1] -11.6295689
beta[2] 0.3221553
Deviance 66.4714655
LP -30.0980992
Reversible-Jump
The manual states: ‘This version of reversible-jump is intended for variable selection and Bayesian Model Averaging (BMA)‘. Hence I am skipping this algorithm.Robust Adaptive Metropolis
Not intended as final method, it did get me close to target pretty quickly.Call:
LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values,
Algorithm = “RAM”, Specs = list(alpha.star = 0.234, Dist = “N”,
gamma = 0.66))
Acceptance Rate: 0.7803
Algorithm: Robust Adaptive Metropolis
Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
beta[1] beta[2]
3887.959 492865.306
Covariance (Diagonal) History: (NOT SHOWN HERE)
Deviance Information Criterion (DIC):
All Stationary
Dbar 43.502 42.582
pD 332.753 0.000
DIC 376.255 42.582
Initial Values:
[1] -10 0
Iterations: 10000
Log(Marginal Likelihood): NA
Minutes of run-time: 0.09
Model: (NOT SHOWN HERE)
Monitor: (NOT SHOWN HERE)
Parameters (Number of): 2
Posterior1: (NOT SHOWN HERE)
Posterior2: (NOT SHOWN HERE)
Recommended Burn-In of Thinned Samples: 100
Recommended Burn-In of Un-thinned Samples: 1000
Recommended Thinning: 60
Specs: (NOT SHOWN HERE)
Status is displayed every 100 iterations
Summary1: (SHOWN BELOW)
Summary2: (SHOWN BELOW)
Thinned Samples: 1000
Thinning: 10
Summary of All Samples
Mean SD MCSE ESS LB Median
beta[1] -12.0385096 0.10860616 0.0103508706 238.0731 -12.1374967 -12.0418931
beta[2] 0.2984386 0.01030721 0.0006992242 392.4126 0.2988978 0.2988978
Deviance 43.5022371 25.79738892 0.9975871047 784.2517 42.5818410 42.5818410
LP -30.5692642 12.89790900 0.4986799500 784.3937 -30.1323235 -30.1091011
UB
beta[1] -12.0418931
beta[2] 0.3008871
Deviance 42.6259729
LP -30.1091011
Summary of Stationary Samples
Mean SD MCSE ESS LB Median
beta[1] -12.0418931 0 0.0000000 2.220446e-16 -12.0418931 -12.0418931
beta[2] 0.2988978 0 0.0000000 2.220446e-16 0.2988978 0.2988978
Deviance 42.5818410 0 0.0000000 2.220446e-16 42.5818410 42.5818410
LP -30.1091011 0 0.4986799 2.220446e-16 -30.1091011 -30.1091011
UB
beta[1] -12.0418931
beta[2] 0.2988978
Deviance 42.5818410
LP -30.1091011
Sequential Adaptive Metropolis-within-Gibbs
The manual states: ‘The Sequential Adaptive Metropolis-within-Gibbs (SAMWG) algorithm is for state-space models (SSMs), including dynamic linear models (DLMs)’. Hence skipped.Sequential Metropolis-within-Gibbs
Not surprising, also for state space modelsSlice
The speed of this algorithm was very dependent on the w variable in the specs. A value of 1 did not give any samples in 8 minutes, after which I stopped the algorithm. I took more reasonable values (0.1,0.001) gave much better speed. Then based on samples from that run, I took three times the standard deviation.Call:
LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values,
Iterations = 20000, Status = 2000, Thinning = 180, Algorithm = “Slice”,
Specs = list(m = Inf, w = c(6, 0.15)))
Acceptance Rate: 1
Algorithm: Slice Sampler
Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
beta[1] beta[2]
4.846007889 0.003955124
Covariance (Diagonal) History: (NOT SHOWN HERE)
Deviance Information Criterion (DIC):
All Stationary
Dbar 44.605 44.605
pD 2.750 2.750
DIC 47.355 47.355
Initial Values:
[1] -10 0
Iterations: 20000
Log(Marginal Likelihood): NA
Minutes of run-time: 0.35
Model: (NOT SHOWN HERE)
Monitor: (NOT SHOWN HERE)
Parameters (Number of): 2
Posterior1: (NOT SHOWN HERE)
Posterior2: (NOT SHOWN HERE)
Recommended Burn-In of Thinned Samples: 0
Recommended Burn-In of Un-thinned Samples: 0
Recommended Thinning: 360
Specs: (NOT SHOWN HERE)
Status is displayed every 2000 iterations
Summary1: (SHOWN BELOW)
Summary2: (SHOWN BELOW)
Thinned Samples: 111
Thinning: 180
Summary of All Samples
Mean SD MCSE ESS LB Median
beta[1] -11.7318448 2.20523008 0.261103387 111 -16.5667692 -11.744123
beta[2] 0.2906884 0.05683097 0.006623955 111 0.1904892 0.290367
Deviance 44.6050665 2.34519974 0.217077260 111 42.5298124 43.979482
LP -31.1194371 1.18126082 0.109764192 111 -34.6093217 -30.802723
UB
beta[1] -7.7817803
beta[2] 0.4118796
Deviance 51.4744628
LP -30.0779865
Summary of Stationary Samples
Mean SD MCSE ESS LB Median
beta[1] -11.7318448 2.20523008 0.261103387 111 -16.5667692 -11.744123
beta[2] 0.2906884 0.05683097 0.006623955 111 0.1904892 0.290367
Deviance 44.6050665 2.34519974 0.217077260 111 42.5298124 43.979482
LP -31.1194371 1.18126082 0.109764192 111 -34.6093217 -30.802723
UB
beta[1] -7.7817803
beta[2] 0.4118796
Deviance 51.4744628
LP -30.0779865
Stochastic Gradient Langevin Dynamics
Manual states it is ‘specifically designed for big data’. It reads chunks of data from a csv. Not the algorithm I would chose for this algorithm for this particular problem.Tempered Hamiltonian Monte Carlo
This is described as a difficult algorithm. I found it most easy to get the epsilon parameter from HMC. That acceptance ratio was low, but a little tweaking gave a reasonable acceptance ratio.Call:
LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values,
Iterations = 20000, Status = 2000, Thinning = 30, Algorithm = “THMC”,
Specs = list(epsilon = 1 * c(0.1, 0.001), L = 2, Temperature = 2))
Acceptance Rate: 0.81315
Algorithm: Tempered Hamiltonian Monte Carlo
Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
beta[1] beta[2]
4.097208702 0.002865553
Covariance (Diagonal) History: (NOT SHOWN HERE)
Deviance Information Criterion (DIC):
All Stationary
Dbar 44.604 44.297
pD 5.194 1.239
DIC 49.798 45.537
Initial Values:
[1] -10 0
Iterations: 20000
Log(Marginal Likelihood): NA
Minutes of run-time: 0.24
Model: (NOT SHOWN HERE)
Monitor: (NOT SHOWN HERE)
Parameters (Number of): 2
Posterior1: (NOT SHOWN HERE)
Posterior2: (NOT SHOWN HERE)
Recommended Burn-In of Thinned Samples: 396
Recommended Burn-In of Un-thinned Samples: 11880
Recommended Thinning: 28
Specs: (NOT SHOWN HERE)
Status is displayed every 2000 iterations
Summary1: (SHOWN BELOW)
Summary2: (SHOWN BELOW)
Thinned Samples: 666
Thinning: 30
Summary of All Samples
Mean SD MCSE ESS LB Median
beta[1] -11.3484317 2.02500365 0.59031391 15.46143 -14.6424427 -11.367700
beta[2] 0.2811592 0.05245157 0.01542082 17.58824 0.1774371 0.283088
Deviance 44.6038844 3.22298411 0.52480075 53.87990 42.4834496 43.819153
LP -31.1140562 1.60615315 0.26083225 54.26093 -34.1794035 -30.724503
UB
beta[1] -7.4119854
beta[2] 0.3687353
Deviance 50.7269596
LP -30.0508992
Summary of Stationary Samples
Mean SD MCSE ESS LB Median
beta[1] -12.6249184 1.44154668 0.56557266 8.986556 -15.2654125 -12.6608107
beta[2] 0.3142047 0.03745808 0.01483015 10.253999 0.2391209 0.3140532
Deviance 44.2973967 1.57433150 0.19032460 52.886367 42.4824664 43.9576438
LP -30.9751102 0.79587121 0.26083225 49.213284 -33.2191766 -30.8002036
UB
beta[1] -9.7109253
beta[2] 0.3803829
Deviance 48.8130032
LP -30.0510080
twalk
For this algorithm I could use the defaults.Call:
LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values,
Iterations = 20000, Status = 2000, Thinning = 30, Algorithm = “twalk”,
Specs = list(SIV = NULL, n1 = 4, at = 6, aw = 1.5))
Acceptance Rate: 0.1725
Algorithm: t-walk
Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
beta[1] beta[2]
3.164272524 0.002344353
Covariance (Diagonal) History: (NOT SHOWN HERE)
Deviance Information Criterion (DIC):
All Stationary
Dbar 46.478 44.191
pD 451.235 1.437
DIC 497.713 45.628
Initial Values:
[1] -10 0
Iterations: 20000
Log(Marginal Likelihood): -21.94976
Minutes of run-time: 0.07
Model: (NOT SHOWN HERE)
Monitor: (NOT SHOWN HERE)
Parameters (Number of): 2
Posterior1: (NOT SHOWN HERE)
Posterior2: (NOT SHOWN HERE)
Recommended Burn-In of Thinned Samples: 66
Recommended Burn-In of Un-thinned Samples: 1980
Recommended Thinning: 270
Specs: (NOT SHOWN HERE)
Status is displayed every 2000 iterations
Summary1: (SHOWN BELOW)
Summary2: (SHOWN BELOW)
Thinned Samples: 666
Thinning: 30
Summary of All Samples
Mean SD MCSE ESS LB Median
beta[1] -11.3588099 1.77939835 0.17301615 78.74936 -15.4171272 -11.0809062
beta[2] 0.2815837 0.04721043 0.00447975 84.80969 0.2051141 0.2748966
Deviance 46.4781029 30.04114466 3.11566520 156.73140 42.5026296 43.4851134
LP -32.0508166 15.01964492 1.55762515 156.89660 -33.5951401 -30.5589320
UB
beta[1] -8.3578718
beta[2] 0.3836584
Deviance 49.5203423
LP -30.0633502
Summary of Stationary Samples
Mean SD MCSE ESS LB Median
beta[1] -11.541692 1.78219147 0.161466015 195.5256 -15.5123754 -11.3408332
beta[2] 0.286237 0.04610116 0.004174498 198.1418 0.2024692 0.2797698
Deviance 44.191483 1.69526231 0.126968354 285.2395 42.4956818 43.6625138
LP -30.909607 0.85274635 1.557625154 281.1672 -33.0747734 -30.6320642
UB
beta[1] -8.3047902
beta[2] 0.3863038
Deviance 48.5623575
LP -30.0609567
Univariate Eigenvector Slice Sampler
This is an adaptive algorithm. I chose A to ensure that the latter part of the samples was not adaptive any more. This also involved tweaking thinning and number of samples. The plot shows beta[2] is more difficult to sample.Call:
LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values,
Iterations = 40000, Status = 2000, Thinning = 50, Algorithm = “UESS”,
Specs = list(A = 50, B = NULL, m = 100, n = 0))
Acceptance Rate: 1
Algorithm: Univariate Eigenvector Slice Sampler
Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
beta[1] beta[2]
6.918581 0.000000
Covariance (Diagonal) History: (NOT SHOWN HERE)
Deviance Information Criterion (DIC):
All Stationary
Dbar 47.762 44.035
pD 50.213 0.813
DIC 97.975 44.848
Initial Values:
[1] -10 0
Iterations: 40000
Log(Marginal Likelihood): NA
Minutes of run-time: 3.8
Model: (NOT SHOWN HERE)
Monitor: (NOT SHOWN HERE)
Parameters (Number of): 2
Posterior1: (NOT SHOWN HERE)
Posterior2: (NOT SHOWN HERE)
Recommended Burn-In of Thinned Samples: 640
Recommended Burn-In of Un-thinned Samples: 32000
Recommended Thinning: 29
Specs: (NOT SHOWN HERE)
Status is displayed every 2000 iterations
Summary1: (SHOWN BELOW)
Summary2: (SHOWN BELOW)
Thinned Samples: 800
Thinning: 50
Summary of All Samples
Mean SD MCSE ESS LB Median
beta[1] -10.4528494 3.29890424 1.15497942 4.177730 -15.53397494 -10.6787420
beta[2] 0.2580348 0.08555002 0.02999169 4.298667 0.03214576 0.2624027
Deviance 47.7621473 10.02129764 3.27536855 6.286801 42.49978608 44.3599919
LP -32.6868085 4.99380143 1.63132674 6.305356 -51.27646862 -30.9846439
UB
beta[1] -1.7181514
beta[2] 0.3910341
Deviance 85.0579082
LP -30.0606649
Summary of Stationary Samples
Mean SD MCSE ESS LB Median
beta[1] -9.9877388 0.72505888 0.343663481 4.067397 -11.1603881 -10.0218190
beta[2] 0.2457418 0.01751842 0.008457087 4.670402 0.2134636 0.2455366
Deviance 44.0350516 1.27504093 0.152202189 111.800645 42.5446199 43.6141453
LP -30.8133272 0.63519594 1.631326739 112.973295 -32.2755446 -30.6036070
UB
beta[1] -8.5556519
beta[2] 0.2753276
Deviance 46.9684759
LP -30.0758784
Updating Sequential Adaptive Metropolis-within-Gibbs
For space-state models.Updating Sequential Metropolis-within-Gibbs
For space-state modelsTo leave a comment for the author, please follow the link and comment on their blog: Wiekvoet.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.