[This article was first published on Wiekvoet, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
I was continuing with my Bayesian algorithms in R exercise. For these exercises I port SAS PROC MCMC examples to the various R solutions. However, the next example was logit model and that’s just too simple, especially after last week’s Jacobian for the Box-Cox transformation. Examples for logit and probit models abound on the web. Hence I took the opportunity to experiment a bit with the various algorithms which LaplacesDemon offers on the logit model. I did nine of them, so I might do some more next week.Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
One thing I noticed for all algorithms. LaplacesDemon has an in build calculation which chooses the length of the burn in and suggests a thinning. This does not work very well. Sometimes it seems for may samples on the target distribution, yet indicates all samples are burn in. Other times it thinks the burn in is done, yet does not find the expected results. Running several chains and human decisions to be more efficient than these long chains with unclear decisions.
It is a bit scary and disappointing that even though this is a very small and simple model and the number of samples is sometimes large, the posterior sometimes does not contain the frequentist solution. How would I know the answer is wrong for more complex models, where the answer is not so obvious?
Data
Data are from example 3 of SAS Proc MCMC. The PROC MCMC stimates are -11.77 and 0.292 respectively. It is a logistic model. The glm() estimates are thus:Call: glm(formula = cbind(y, n – y) ~ x, family = binomial, data = set2)
Coefficients:
(Intercept) x
-11.2736 0.2793
Degrees of Freedom: 19 Total (i.e. Null); 18 Residual
Null Deviance: 71.8
Residual Deviance: 15.25 AIC: 46.44
Setup
For each algorithm I started with the default number of samples and thinning. Based on the output the thinning and number of samples would be adapted until such point that the thinning was at least as large as the recommended thinning and there was a decent number of samples after burn in.MWG
MWG needed 80000 samples before it gave answers. Notice that beta[2] was not mixing very well. The estimates seem off.
Call:
LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values,
Iterations = 80000, Status = 2000, Thinning = 30)
Acceptance Rate: 0.24453
Algorithm: Metropolis-within-Gibbs
Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
beta[1] beta[2]
2.835066 2.835066
Covariance (Diagonal) History: (NOT SHOWN HERE)
Deviance Information Criterion (DIC):
All Stationary
Dbar 45.242 45.360
pD 1.966 1.955
DIC 47.208 47.315
Initial Values:
[1] -10 0
Iterations: 80000
Log(Marginal Likelihood): -23.51154
Minutes of run-time: 0.35
Model: (NOT SHOWN HERE)
Monitor: (NOT SHOWN HERE)
Parameters (Number of): 2
Posterior1: (NOT SHOWN HERE)
Posterior2: (NOT SHOWN HERE)
Recommended Burn-In of Thinned Samples: 1862
Recommended Burn-In of Un-thinned Samples: 55860
Recommended Thinning: 34
Specs: (NOT SHOWN HERE)
Status is displayed every 2000 iterations
Summary1: (SHOWN BELOW)
Summary2: (SHOWN BELOW)
Thinned Samples: 2666
Thinning: 30
Summary of All Samples
Mean SD MCSE ESS LB Median
beta[1] -9.0326306 1.04621897 0.220388172 7.322802 -11.2499597 -8.9042795
beta[2] 0.2209152 0.02658052 0.005719566 7.354199 0.1730201 0.2174406
Deviance 45.2421985 1.98273668 0.194161638 22.653492 42.5636767 44.7799650
LP -31.4080976 0.98541260 0.095926332 23.196296 -33.8514305 -31.1737818
UB
beta[1] -7.1874098
beta[2] 0.2772263
Deviance 50.1501559
LP -30.0892713
Summary of Stationary Samples
Mean SD MCSE ESS LB Median
beta[1] -8.9359418 0.99836162 0.349118267 3.269911 -10.6298830 -8.8780160
beta[2] 0.2188631 0.02541074 0.009077136 2.979785 0.1818618 0.2180453
Deviance 45.3601829 1.97741388 0.197527290 5.636751 42.7114169 45.2011226
LP -31.4661714 0.98254393 0.095926332 5.760722 -33.7158111 -31.3894625
UB
beta[1] -7.4135378
beta[2] 0.2609228
Deviance 49.8800864
LP -30.1541170
HARM
No specs
I ended with 160000 samples. From the plot I’d say that is somewhat overkill.Call:
LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values,
Iterations = 160000, Status = 2000, Thinning = 36, Algorithm = “HARM”)
Acceptance Rate: 0.06213
Algorithm: Hit-And-Run Metropolis
Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
beta[1] beta[2]
2.863159336 0.001961247
Covariance (Diagonal) History: (NOT SHOWN HERE)
Deviance Information Criterion (DIC):
All Stationary
Dbar 44.449 44.449
pD 1.704 1.704
DIC 46.153 46.153
Initial Values:
[1] -10 0
Iterations: 160000
Log(Marginal Likelihood): -23.13795
Minutes of run-time: 0.38
Model: (NOT SHOWN HERE)
Monitor: (NOT SHOWN HERE)
Parameters (Number of): 2
Posterior1: (NOT SHOWN HERE)
Posterior2: (NOT SHOWN HERE)
Recommended Burn-In of Thinned Samples: 0
Recommended Burn-In of Un-thinned Samples: 0
Recommended Thinning: 36
Specs: (NOT SHOWN HERE)
Status is displayed every 2000 iterations
Summary1: (SHOWN BELOW)
Summary2: (SHOWN BELOW)
Thinned Samples: 4444
Thinning: 36
Summary of All Samples
Mean SD MCSE ESS LB Median
beta[1] -12.5516619 1.69184474 0.251682993 43.36212 -15.7525684 -12.537176
beta[2] 0.3121025 0.04404281 0.006471107 46.72382 0.2306382 0.312301
Deviance 44.4489336 1.84619493 0.166569318 221.64136 42.5029914 43.927156
LP -31.0503518 0.93299371 0.085590782 211.80050 -33.5115921 -30.783807
UB
beta[1] -9.3734152
beta[2] 0.3968852
Deviance 49.3254872
LP -30.0617562
Summary of Stationary Samples
Mean SD MCSE ESS LB Median
beta[1] -12.5516619 1.69184474 0.251682993 43.36212 -15.7525684 -12.537176
beta[2] 0.3121025 0.04404281 0.006471107 46.72382 0.2306382 0.312301
Deviance 44.4489336 1.84619493 0.166569318 221.64136 42.5029914 43.927156
LP -31.0503518 0.93299371 0.085590782 211.80050 -33.5115921 -30.783807
UB
beta[1] -9.3734152
beta[2] 0.3968852
Deviance 49.3254872
LP -30.0617562
Specs: list(alpha.star=0.234, B=NULL)
This sometimes got stuck, making all samples the same. Such faulty runs are repeated. In addition it seems the algorithm is not able to detect a good run. When I came to a whopping 1280000 samples I decided enough is enough.Call:
LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values,
Iterations = 1280000, Status = 8000, Thinning = 42, Algorithm = “HARM”,
Specs = list(alpha.star = 0.234, B = NULL))
Acceptance Rate: 0.23416
Algorithm: Hit-And-Run Metropolis
Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
beta[1] beta[2]
3.639417089 0.002441388
Covariance (Diagonal) History: (NOT SHOWN HERE)
Deviance Information Criterion (DIC):
All Stationary
Dbar 44.359 44.328
pD 1.597 1.532
DIC 45.956 45.860
Initial Values:
[1] -10 0
Iterations: 1280000
Log(Marginal Likelihood): -23.38909
Minutes of run-time: 2.91
Model: (NOT SHOWN HERE)
Monitor: (NOT SHOWN HERE)
Parameters (Number of): 2
Posterior1: (NOT SHOWN HERE)
Posterior2: (NOT SHOWN HERE)
Recommended Burn-In of Thinned Samples: 6094
Recommended Burn-In of Un-thinned Samples: 255948
Recommended Thinning: 44
Specs: (NOT SHOWN HERE)
Status is displayed every 8000 iterations
Summary1: (SHOWN BELOW)
Summary2: (SHOWN BELOW)
Thinned Samples: 30476
Thinning: 42
Summary of All Samples
Mean SD MCSE ESS LB Median
beta[1] -11.8540232 1.90772737 0.141469541 28.83441 -15.618594 -11.8276283
beta[2] 0.2941959 0.04938246 0.003631577 29.75273 0.206555 0.2931946
Deviance 44.3593200 1.78715332 0.031531123 190.88005 42.500061 43.8415966
LP -30.9974154 0.90059957 0.016062596 182.03381 -33.375122 -30.7354077
UB
beta[1] -8.489146
beta[2] 0.392589
Deviance 49.076360
LP -30.058998
Summary of Stationary Samples
Mean SD MCSE ESS LB Median
beta[1] -11.7694571 1.87121305 0.153383946 24.00847 -15.4323928 -11.8230837
beta[2] 0.2920393 0.04844789 0.003937189 24.51596 0.2027361 0.2930413
Deviance 44.3276492 1.75044211 0.033218178 182.18810 42.5044563 43.8258628
LP -30.9805115 0.87993039 0.016062596 176.04438 -33.2870801 -30.7284209
UB
beta[1] -8.3411645
beta[2] 0.3869563
Deviance 48.9102683
LP -30.0612554
Adaptive Directional Metropolis-within-Gibbs
no specs
This algorithm seemed to be able to get stuck outside the target region. As other algorithms it seems that increasing the thinning only leads to suggestions for further increase.Call:
LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values,
Iterations = 250000, Status = 2000, Thinning = 35, Algorithm = “ADMG”)
Acceptance Rate: 0.0841
Algorithm: Adaptive Directional Metropolis-within-Gibbs
Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
beta[1] beta[2]
3.694667553 0.002472681
Covariance (Diagonal) History: (NOT SHOWN HERE)
Deviance Information Criterion (DIC):
All Stationary
Dbar 44.362 44.362
pD 1.790 1.790
DIC 46.152 46.152
Initial Values:
[1] -10 0
Iterations: 250000
Log(Marginal Likelihood): NA
Minutes of run-time: 1.82
Model: (NOT SHOWN HERE)
Monitor: (NOT SHOWN HERE)
Parameters (Number of): 2
Posterior1: (NOT SHOWN HERE)
Posterior2: (NOT SHOWN HERE)
Recommended Burn-In of Thinned Samples: 0
Recommended Burn-In of Un-thinned Samples: 0
Recommended Thinning: 38
Specs: (NOT SHOWN HERE)
Status is displayed every 2000 iterations
Summary1: (SHOWN BELOW)
Summary2: (SHOWN BELOW)
Thinned Samples: 7142
Thinning: 35
Summary of All Samples
Mean SD MCSE ESS LB Median
beta[1] -11.5514694 1.92227432 0.252091958 40.70347 -15.7178588 -11.4718511
beta[2] 0.2863682 0.04966254 0.006471524 40.98657 0.1965967 0.2829988
Deviance 44.3618406 1.89210234 0.068523057 227.09714 42.4858150 43.7976307
LP -30.9951604 0.95027797 0.034622622 221.64249 -33.4547190 -30.7101949
UB
beta[1] -8.0953413
beta[2] 0.3936748
Deviance 49.2894939
LP -30.0514927
Summary of Stationary Samples
Mean SD MCSE ESS LB Median
beta[1] -11.5514694 1.92227432 0.252091958 40.70347 -15.7178588 -11.4718511
beta[2] 0.2863682 0.04966254 0.006471524 40.98657 0.1965967 0.2829988
Deviance 44.3618406 1.89210234 0.068523057 227.09714 42.4858150 43.7976307
LP -30.9951604 0.95027797 0.034622622 221.64249 -33.4547190 -30.7101949
UB
beta[1] -8.0953413
beta[2] 0.3936748
Deviance 49.2894939
LP -30.0514927
Specs: list(n = 0, Periodicity = 100)
This seems to be a run which does not mix very well in beta[1]. The posteriour is not on the target either. However, I do not see an obvious characteristic from which to notice the latter.Call:
LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values,
Iterations = 64000, Status = 2000, Thinning = 33, Algorithm = “ADMG”,
Specs = list(n = 0, Periodicity = 100))
Acceptance Rate: 0.09229
Algorithm: Adaptive Directional Metropolis-within-Gibbs
Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
beta[1] beta[2]
4.718765252 0.003150388
Covariance (Diagonal) History: (NOT SHOWN HERE)
Deviance Information Criterion (DIC):
All Stationary
Dbar 44.625 44.368
pD 1.848 0.914
DIC 46.473 45.282
Initial Values:
[1] -10 0
Iterations: 64000
Log(Marginal Likelihood): NA
Minutes of run-time: 0.36
Model: (NOT SHOWN HERE)
Monitor: (NOT SHOWN HERE)
Parameters (Number of): 2
Posterior1: (NOT SHOWN HERE)
Posterior2: (NOT SHOWN HERE)
Recommended Burn-In of Thinned Samples: 1544
Recommended Burn-In of Un-thinned Samples: 50952
Recommended Thinning: 32
Specs: (NOT SHOWN HERE)
Status is displayed every 2000 iterations
Summary1: (SHOWN BELOW)
Summary2: (SHOWN BELOW)
Thinned Samples: 1939
Thinning: 33
Summary of All Samples
Mean SD MCSE ESS LB Median
beta[1] -11.314847 2.17303791 0.51002442 11.27064 -15.1041582 -11.4860852
beta[2] 0.279974 0.05601643 0.01310839 10.57305 0.1747337 0.2834938
Deviance 44.625141 1.92250413 0.19216964 59.12247 42.5136669 44.1268753
LP -31.124617 0.95756642 0.09526603 60.52000 -33.5147916 -30.8800217
UB
beta[1] -7.2420670
beta[2] 0.3795564
Deviance 49.4135552
LP -30.0677263
Summary of Stationary Samples
Mean SD MCSE ESS LB Median
beta[1] -13.3566117 0.72016481 0.299751317 5.473664 -15.0713103 -13.1769958
beta[2] 0.3325182 0.01971691 0.007968755 6.324196 0.3014903 0.3294776
Deviance 44.3682834 1.35175074 0.137999589 30.199161 42.7948298 44.0306538
LP -31.0192877 0.68081646 0.095266030 28.411038 -32.6277457 -30.8439440
UB
beta[1] -12.2282779
beta[2] 0.3766297
Deviance 47.5762853
LP -30.2209601
Adaptive Griddy-Gibbs
A thinning of 1000 was proposed.Call:
LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values,
Iterations = 80000, Status = 2000, Thinning = 1000, Algorithm = “AGG”,
Specs = list(Grid = GaussHermiteQuadRule(3)$nodes, dparm = NULL,
smax = Inf, CPUs = 1, Packages = NULL, Dyn.libs = NULL))
Acceptance Rate: 1
Algorithm: Adaptive Griddy-Gibbs
Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
beta[1] beta[2]
19.42384441 0.01546567
Covariance (Diagonal) History: (NOT SHOWN HERE)
Deviance Information Criterion (DIC):
All Stationary
Dbar 53.739 53.739
pD 2320.547 2320.547
DIC 2374.286 2374.286
Initial Values:
[1] -10 0
Iterations: 80000
Log(Marginal Likelihood): NA
Minutes of run-time: 2.73
Model: (NOT SHOWN HERE)
Monitor: (NOT SHOWN HERE)
Parameters (Number of): 2
Posterior1: (NOT SHOWN HERE)
Posterior2: (NOT SHOWN HERE)
Recommended Burn-In of Thinned Samples: 0
Recommended Burn-In of Un-thinned Samples: 0
Recommended Thinning: 1000
Specs: (NOT SHOWN HERE)
Status is displayed every 2000 iterations
Summary1: (SHOWN BELOW)
Summary2: (SHOWN BELOW)
Thinned Samples: 80
Thinning: 1000
Summary of All Samples
Mean SD MCSE ESS LB Median
beta[1] -10.922145 4.4338567 0.50560810 80 -16.5329510 -11.2359881
beta[2] 0.269604 0.1214608 0.01367873 80 0.1295182 0.2783504
Deviance 53.738973 68.1255818 7.52694767 80 42.5397709 44.3774010
LP -35.684516 34.0782560 3.76525972 80 -40.1716354 -31.0031726
UB
beta[1] -5.6863543
beta[2] 0.4200815
Deviance 62.5858557
LP -30.0729465
Summary of Stationary Samples
Mean SD MCSE ESS LB Median
beta[1] -10.922145 4.4338567 0.50560810 80 -16.5329510 -11.2359881
beta[2] 0.269604 0.1214608 0.01367873 80 0.1295182 0.2783504
Deviance 53.738973 68.1255818 7.52694767 80 42.5397709 44.3774010
LP -35.684516 34.0782560 3.76525972 80 -40.1716354 -31.0031726
UB
beta[1] -5.6863543
beta[2] 0.4200815
Deviance 62.5858557
LP -30.0729465
Adaptive Hamiltonian Monte Carlo
Call:
LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values,
Iterations = 150000, Status = 2000, Thinning = 36, Algorithm = “AHMC”,
Specs = list(epsilon = rep(0.02, length(Initial.Values)),
L = 2, Periodicity = 10))
Acceptance Rate: 0.36918
Algorithm: Adaptive Hamiltonian Monte Carlo
Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
beta[1] beta[2]
1.1442983280 0.0008202951
Covariance (Diagonal) History: (NOT SHOWN HERE)
Deviance Information Criterion (DIC):
All Stationary
Dbar 43.736 43.682
pD 1.214 1.272
DIC 44.950 44.954
Initial Values:
[1] -10 0
Iterations: 150000
Log(Marginal Likelihood): NA
Minutes of run-time: 1.74
Model: (NOT SHOWN HERE)
Monitor: (NOT SHOWN HERE)
Parameters (Number of): 2
Posterior1: (NOT SHOWN HERE)
Posterior2: (NOT SHOWN HERE)
Recommended Burn-In of Thinned Samples: 2912
Recommended Burn-In of Un-thinned Samples: 104832
Recommended Thinning: 36
Specs: (NOT SHOWN HERE)
Status is displayed every 2000 iterations
Summary1: (SHOWN BELOW)
Summary2: (SHOWN BELOW)
Thinned Samples: 4166
Thinning: 36
Summary of All Samples
Mean SD MCSE ESS LB Median
beta[1] -11.4418192 1.06961398 0.191704524 7.357239 -14.1113189 -11.4442594
beta[2] 0.2837334 0.02830491 0.004949075 9.071151 0.2346106 0.2835194
Deviance 43.7356469 1.55816164 0.036118007 526.351697 42.4689017 43.1991684
LP -30.6795260 0.78105728 0.018367981 492.409683 -32.7826226 -30.4108318
UB
beta[1] -9.6350028
beta[2] 0.3515657
Deviance 47.9431739
LP -30.0443227
Summary of Stationary Samples
Mean SD MCSE ESS LB Median
beta[1] -11.9854873 0.56317415 0.15499286 8.169076 -12.9867511 -11.9369396
beta[2] 0.2982346 0.01576288 0.00396860 11.739663 0.2675003 0.2982497
Deviance 43.6824281 1.59499752 0.04774315 545.963385 42.4718352 43.1363939
LP -30.6588754 0.79841066 0.01836798 518.072910 -33.0652295 -30.3900004
UB
beta[1] -10.8925810
beta[2] 0.3269875
Deviance 48.4916661
LP -30.0465224
Adaptive Metropolis
High thinning with 800, but nice mixing.Call:
LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values,
Iterations = 80000, Status = 2000, Thinning = 800, Algorithm = “AM”,
Specs = list(Adaptive = 200, Periodicity = 200))
Acceptance Rate: 0.26118
Algorithm: Adaptive Metropolis
Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
beta[1] beta[2]
11.850286307 0.008006239
Covariance (Diagonal) History: (NOT SHOWN HERE)
Deviance Information Criterion (DIC):
All Stationary
Dbar 44.437 44.437
pD 1.630 1.630
DIC 46.067 46.067
Initial Values:
[1] -10 0
Iterations: 80000
Log(Marginal Likelihood): NA
Minutes of run-time: 0.36
Model: (NOT SHOWN HERE)
Monitor: (NOT SHOWN HERE)
Parameters (Number of): 2
Posterior1: (NOT SHOWN HERE)
Posterior2: (NOT SHOWN HERE)
Recommended Burn-In of Thinned Samples: 0
Recommended Burn-In of Un-thinned Samples: 0
Recommended Thinning: 800
Specs: (NOT SHOWN HERE)
Status is displayed every 2000 iterations
Summary1: (SHOWN BELOW)
Summary2: (SHOWN BELOW)
Thinned Samples: 100
Thinning: 800
Summary of All Samples
Mean SD MCSE ESS LB Median
beta[1] -11.7026349 1.97444818 0.188498237 100 -15.4468354 -11.6906840
beta[2] 0.2905268 0.04989136 0.004767928 100 0.2047257 0.2898906
Deviance 44.4368803 1.80543310 0.166862161 100 42.5326068 43.8582816
LP -31.0345215 0.90945995 0.084411163 100 -33.4044687 -30.7391583
UB
beta[1] -8.3034612
beta[2] 0.3801087
Deviance 49.1461781
LP -30.0717992
Summary of Stationary Samples
Mean SD MCSE ESS LB Median
beta[1] -11.7026349 1.97444818 0.188498237 100 -15.4468354 -11.6906840
beta[2] 0.2905268 0.04989136 0.004767928 100 0.2047257 0.2898906
Deviance 44.4368803 1.80543310 0.166862161 100 42.5326068 43.8582816
LP -31.0345215 0.90945995 0.084411163 100 -33.4044687 -30.7391583
UB
beta[1] -8.3034612
beta[2] 0.3801087
Deviance 49.1461781
LP -30.0717992
Adaptive Metropolis-within-Gibbs
A nice example where LaplacesDemon first makes me increase the number of samples then suddenly I get a run where it decides no burn in was needed. Needless to say with over a million samples I did not go to increase the thinning a bit more.Call:
LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values,
Iterations = 1200000, Status = 2000, Thinning = 41, Algorithm = “AMWG”,
Specs = list(Periodicity = 200))
Acceptance Rate: 0.24915
Algorithm: Adaptive Metropolis-within-Gibbs
Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
beta[1] beta[2]
2.835066 2.835066
Covariance (Diagonal) History: (NOT SHOWN HERE)
Deviance Information Criterion (DIC):
All Stationary
Dbar 44.407 44.407
pD 1.896 1.896
DIC 46.304 46.304
Initial Values:
[1] -10 0
Iterations: 1200000
Log(Marginal Likelihood): NA
Minutes of run-time: 4.95
Model: (NOT SHOWN HERE)
Monitor: (NOT SHOWN HERE)
Parameters (Number of): 2
Posterior1: (NOT SHOWN HERE)
Posterior2: (NOT SHOWN HERE)
Recommended Burn-In of Thinned Samples: 0
Recommended Burn-In of Un-thinned Samples: 0
Recommended Thinning: 44
Specs: (NOT SHOWN HERE)
Status is displayed every 2000 iterations
Summary1: (SHOWN BELOW)
Summary2: (SHOWN BELOW)
Thinned Samples: 29268
Thinning: 41
Summary of All Samples
Mean SD MCSE ESS LB Median
beta[1] -11.826585 1.96434369 0.146404922 39.11735 -15.8139146 -11.715120
beta[2] 0.293541 0.05072947 0.003808978 38.10170 0.1983134 0.290513
Deviance 44.407436 1.94752859 0.026815581 197.45010 42.4872692 43.822249
LP -31.021258 0.98017230 0.013578417 192.69216 -33.7006842 -30.727256
UB
beta[1] -8.0854510
beta[2] 0.3961088
Deviance 49.7428566
LP -30.0525790
Summary of Stationary Samples
Mean SD MCSE ESS LB Median
beta[1] -11.826585 1.96434369 0.146404922 39.11735 -15.8139146 -11.715120
beta[2] 0.293541 0.05072947 0.003808978 38.10170 0.1983134 0.290513
Deviance 44.407436 1.94752859 0.026815581 197.45010 42.4872692 43.822249
LP -31.021258 0.98017230 0.013578417 192.69216 -33.7006842 -30.727256
UB
beta[1] -8.0854510
beta[2] 0.3961088
Deviance 49.7428566
LP -30.0525790
Common Code
All calls use the same data, model and plotting as given below.s1 <- scan(what=list(integer(),double(),double()),text=’
6 0 25.7 8 2 35.9 5 2 32.9 7 7 50.4 6 0 28.3
7 2 32.3 5 1 33.2 8 3 40.9 6 0 36.5 6 1 36.5
6 6 49.6 6 3 39.8 6 4 43.6 6 1 34.1 7 1 37.4
8 2 35.2 6 6 51.3 5 3 42.5 7 0 31.3 3 2 40.6′)
set2 <- data.frame(n=s1[[1]],x=s1[[3]],y=s1[[2]])
set2
glm(cbind(y,n-y)~ x,data=set2,family=binomial)
library(LaplacesDemon)
J <- 2 #Number of parameters
mon.names <- “LP”
parm.names <- c(“beta[1]”,”beta[2]”)
PGF <- function(Data) return(rnormv(Data$J,0,1000))
MyData <- list(J=J, PGF=PGF, n=set2$n, mon.names=mon.names,
parm.names=parm.names, x=set2$x, y=set2$y)
Model <- function(parm, Data)
{
### Parameters
beta <- parm[1:Data$J]
### Log-Prior
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
### Log-Likelihood
mu <- beta[1] + beta[2]*Data$x
p <- invlogit(mu)
LL <- sum(dbinom(Data$y, Data$n, p, log=TRUE))
### Log-Posterior
LP <- LL + beta.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,
yhat=rbinom(length(p), Data$n, p), parm=parm)
return(Modelout)
}
Initial.Values <- c(-10,0)
myplot <- function(where=’none’) {
if (where!=’none’) {
png(paste(where,’.png’,sep=”))
}
par(mfrow=c(2,2),mar=rep(2,4),oma=c(0,0,2,0))
plot(ts(Fit$Posterior1[,1]),ylab=”)
plot(ts(Fit$Posterior2[,1]),ylab=”)
plot(ts(Fit$Posterior1[,2]),ylab=”)
plot(ts(Fit$Posterior2[,2]),ylab=”)
title(main=Fit$Algorithm,outer=TRUE)
if (where!=’none’) dev.off()
}
To leave a comment for the author, please follow the link and comment on their blog: Wiekvoet.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.