Using colorized PNG pictograms in R base plots

[This article was first published on "R" you ready?, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Today I stumbled across a figure in an explanation on multiple factor analysis which contained pictograms.

 

abdi_mfa

Figure 1 from Abdi & Valentin (2007), p. 8.

I wanted to reproduce a similar figure in R using pictograms and additionally color them e.g. by group membership . I have almost no knowledge about image processing, so I tried out several methods of how to achieve what I want. The first thing I did was read in an PNG file and look at the data structure. The package png allows to read in PNG files. Note that all of the below may not work on Windows machines, as it does not support semi-transparency (see ?readPNG).

library(png)
img <- readPNG(system.file("img", "Rlogo.png", package="png"))
class(img)

## [1] "array"

dim(img)

## [1]  76 100   4

The object is a numerical array with four layers (red, green, blue, alpha; short RGBA). Let’s have a look at the first layer (red) and replace all non-zero entries by a one and the zeros by a dot. This will show us the pattern of non-zero values and we already see the contours.

l4 <- img[,,1]
l4[l4 > 0] <- 1
l4[l4 == 0] <- "."
d <- apply(l4, 1, function(x) {
 cat(paste0(x, collapse=""), "n") 
})

To display the image in R one way is to raster the image (i.e. the RGBA layers are collapsed into a layer of single HEX value) and print it using rasterImage.

r_logo_layer_1

rimg <- as.raster(img) # raster multilayer object
r <- nrow(rimg) / ncol(rimg) # image ratio
plot(c(0,1), c(0,r), type = "n", xlab = "", ylab = "", asp=1)
rasterImage(rimg, 0, 0, 1, r) 

plot_1

Let’s have a look at a small part the rastered image object. It is a matrix of HEX values.

rimg[40:50, 1:6]


## [1,] "#C4C5C202" "#858981E8" "#838881FF" "#888D86FF" "#8D918AFF" "#8F938CFF"
## [2,] "#00000000" "#848881A0" "#80847CFF" "#858A83FF" "#898E87FF" "#8D918BFF"
## [3,] "#00000000" "#8B8E884C" "#7D817AFF" "#82867EFF" "#868B84FF" "#8A8E88FF"
## [4,] "#00000000" "#9FA29D04" "#7E827BE6" "#7E817AFF" "#838780FF" "#878C85FF"
## [5,] "#00000000" "#00000000" "#81857D7C" "#797E75FF" "#7F827BFF" "#838781FF"
## [6,] "#00000000" "#00000000" "#898C8510" "#787D75EE" "#797E76FF" "#7F837BFF"
## [7,] "#00000000" "#00000000" "#00000000" "#7F837C7B" "#747971FF" "#797E76FF"
## [8,] "#00000000" "#00000000" "#00000000" "#999C9608" "#767C73DB" "#747971FF"
## [9,] "#00000000" "#00000000" "#00000000" "#00000000" "#80847D40" "#71766EFD"
## [10,] "#00000000" "#00000000" "#00000000" "#00000000" "#00000000" "#787D7589"
## [11,] "#00000000" "#00000000" "#00000000" "#00000000" "#00000000" "#999C9604"

And print this small part.

plot(c(0,1), c(0,.6), type = "n", xlab = "", ylab = "", asp=1)
rasterImage(rimg[40:50, 1:6], 0, 0, 1, .6) 

plot_2

Now we have an idea of how the image object and the rastered object look like from the inside. Let’s start to modify the images to suit our needs.

In order to change the color of the pictograms, my first idea was to convert the graphics to greyscale and remap the values to a color ramp of may choice. To convert to greyscale there are tons of methods around (see e.g. here). I just pick one of them I found on SO by chance. With R=Red, G=Green and B=Blue we have

brightness = sqrt(0.299 * R^2 + 0.587 * G^2 + 0.114 * B^2)

This approach modifies the PNG files after they have been coerced into a raster object.

# function to calculate brightness values
brightness <- function(hex) {
  v <- col2rgb(hex)
  sqrt(0.299 * v[1]^2 + 0.587 * v[2]^2 + 0.114 * v[3]^2) /255
}

# given a color ramp, map brightness to ramp also taking into account 
# the alpha level. The defaul color ramp is grey
#
img_to_colorramp <- function(img, ramp=grey) {
  cv <- as.vector(img)
  b <- sapply(cv, brightness)
  g <- ramp(b)
  a <- substr(cv, 8,9)     # get alpha values
  ga <- paste0(g, a)       # add alpha values to new colors
  img.grey <- matrix(ga, nrow(img), ncol(img), byrow=TRUE)  
}

# read png and modify
img <- readPNG(system.file("img", "Rlogo.png", package="png"))
img <- as.raster(img)           # raster multilayer object
r <- nrow(img) / ncol(img)      # image ratio
s <- 3.5                        # size

plot(c(0,10), c(0,3.5), type = "n", xlab = "", ylab = "", asp=1)

rasterImage(img, 0, 0, 0+s/r, 0+s)  # original
img2 <- img_to_colorramp(img)       # modify using grey scale
rasterImage(img2, 5, 0, 5+s/r, 0+s)

plot_3

Great, it works! Now Let’s go and try out some other color palettes using colorRamp to create a color ramp.

plot(c(0,10),c(0,8.5), type = "n", xlab = "", ylab = "", asp=1)

img1 <- img_to_colorramp(img)
rasterImage(img1, 0, 5, 0+s/r, 5+s)

reds <- function(x) 
  rgb(colorRamp(c("darkred", "white"))(x), maxColorValue = 255)
img2 <- img_to_colorramp(img, reds)
rasterImage(img2, 5, 5, 5+s/r, 5+s)

greens <- function(x) 
  rgb(colorRamp(c("darkgreen", "white"))(x), maxColorValue = 255)
img3 <- img_to_colorramp(img, greens)
rasterImage(img3, 0, 0, 0+s/r, 0+s)

single_color <- function(...) "#0000BB"
img4 <- img_to_colorramp(img, single_color)
rasterImage(img4, 5, 0, 5+s/r, 0+s)

plot_4

Okay, that basically does the job. Now we will apply it to the wine pictograms.
Let’s use this wine glass from Wikimedia Commons. It’s quite big so I uploaded a reduced size version to imgur . We will use it for our purposes.

# load file from web
f <- tempfile()
download.file("http://i.imgur.com/A14ntCt.png", f)
img <- readPNG(f)
img <- as.raster(img)
r <- nrow(img) / ncol(img)
s <- 1

# let's create a function that returns a ramp function to save typing
ramp <- function(colors) 
  function(x) rgb(colorRamp(colors)(x), maxColorValue = 255)

# create dataframe with coordinates and colors
set.seed(1)
x <- data.frame(x=rnorm(16, c(2,2,4,4)), 
                y=rnorm(16, c(1,3)), 
                colors=c("black", "darkred", "garkgreen", "darkblue"))

plot(c(1,6), c(0,5), type="n", xlab="", ylab="", asp=1)
for (i in 1L:nrow(x)) {
  colorramp <- ramp(c(x[i,3], "white"))
  img2 <- img_to_colorramp(img, colorramp)
  rasterImage(img2, x[i,1], x[i,2], x[i,1]+s/r, x[i,2]+s)
}

plot_5

Another approach would be to modifying the RGB layers before rastering to HEX values.

img <- readPNG(system.file("img", "Rlogo.png", package="png"))
img2 <- img
img[,,1] <- 0    # remove Red component
img[,,2] <- 0    # remove Green component
img[,,3] <- 1    # Set Blue to max
img <- as.raster(img)
r <- nrow(img) / ncol(img)  # size ratio
s <- 3.5   # size
plot(c(0,10), c(0,3.5), type = "n", xlab = "", ylab = "", asp=1)
rasterImage(img, 0, 0, 0+s/r, 0+s)

img2[,,1] <- 1   # Red to max
img2[,,2] <- 0
img2[,,3] <- 0
rasterImage(as.raster(img2), 5, 0, 5+s/r, 0+s)

plot_6

To just colorize the image, we could weight each layer.

# wrap weighting into function
weight_layers <- function(img, w) {
  for (i in seq_along(w))
    img[,,i] <- img[,,i] * w[i]
  img
}

plot(c(0,10), c(0,3.5), type = "n", xlab = "", ylab = "", asp=1)
img <- readPNG(system.file("img", "Rlogo.png", package="png"))
img2 <- weight_layers(img, c(.2, 1,.2))
rasterImage(img2, 0, 0, 0+s/r, 0+s)

img3 <- weight_layers(img, c(1,0,0))
rasterImage(img3, 5, 0, 5+s/r, 0+s)

plot_7

After playing around and hard-coding the modifications I started to search and found the EBimage package which has a lot of features for image processing that make ones life (in this case only a bit) easier.

library(EBImage)
f <- system.file("img", "Rlogo.png", package="png")
img <- readImage(f) 
img2 <- img

img[,,2] = 0      # zero out green layer
img[,,3] = 0      # zero out blue layer
img <- as.raster(img)

img2[,,1] = 0
img2[,,3] = 0
img2 <- as.raster(img2)

r <- nrow(img) / ncol(img)
s <- 3.5
plot(c(0,10), c(0,3.5), type = "n", xlab = "", ylab = "", asp=1)
rasterImage(img, 0, 0, 0+s/r, 0+s)
rasterImage(img2, 5, 0, 5+s/r, 0+s)

plot_8

EBImage is a good choice and fairly easy to handle. Now let’s again print the pictograms.

f <- tempfile(fileext=".png")
download.file("http://i.imgur.com/A14ntCt.png", f)
img <- readImage(f)

# will replace whole image layers by one value
# only makes sense if there is a alpha layer that 
# gives the contours
#
mod_color <- function(img, col) {
  v <- col2rgb(col) / 255
  img = channel(img, 'rgb')
  img[,,1] = v[1]   # Red
  img[,,2] = v[2]   # Green
  img[,,3] = v[3]   # Blue
  as.raster(img)  
}

r <- nrow(img) / ncol(img)  # get image ratio
s <- 1                      # size

# create random data
set.seed(1)
x <- data.frame(x=rnorm(16, c(2,2,4,4)), 
                y=rnorm(16, c(1,3)), 
                colors=1:4)

# plot pictograms 
plot(c(1,6), c(0,5), type="n", xlab="", ylab="", asp=1)
for (i in 1L:nrow(x)) {
  img2 <- mod_color(img, x[i, 3])
  rasterImage(img2, x[i,1], x[i,2], x[i,1]+s*r, x[i,2]+s)
}

plot_9

Note, that above I did not bother to center each pictogram to position it correctly. This still needs to be done. Anyway, that’s it! Mission completed.

Literature

Abdi, H., & Valentin, D. (2007). Multiple factor analysis (MFA). In N. Salkind (Ed.), Encyclopedia of Measurement and Statistics (pp. 1–14). Thousand Oaks, CA: Sage Publications. Retrieved from https://www.utdallas.edu/~herve/Abdi-MFA2007-pretty.pdf


To leave a comment for the author, please follow the link and comment on their blog: "R" you ready?.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)