Intermission: A Data File For Futures Data (from Quandl)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
So between variations of different strategies, for those who have yet to come across it, my IKTrading package has a function called quandClean, which exists to get and clean daily futures data from quandl.com . The exact process can be found on the Revolution Analytics blog on this post.
While some of their futures data is quoted in other currencies, or has very short history, I’ve compiled a data file to get futures data that has long history.
Found there are price histories for ags, precious metals, forex, and more.
Here’s the code:
require(IKTrading) currency('USD') Sys.setenv(TZ="UTC") t1 <- Sys.time() if(!"CME_CL" %in% ls()) { #Energies CME_CL <- quandClean("CHRIS/CME_CL", start_date=from, end_date=to, verbose=verbose) #Crude CME_NG <- quandClean("CHRIS/CME_NG", start_date=from, end_date=to, verbose=verbose) #NatGas CME_HO <- quandClean("CHRIS/CME_HO", start_date=from, end_date=to, verbose=verbose) #HeatingOil CME_RB <- quandClean("CHRIS/CME_RB", start_date=from, end_date=to, verbose=verbose) #Gasoline ICE_B <- quandClean("CHRIS/ICE_B", start_date=from, end_date=to, verbose=verbose) #Brent ICE_G <- quandClean("CHRIS/ICE_G", start_date=from, end_date=to, verbose=verbose) #Gasoil #Grains CME_C <- quandClean("CHRIS/CME_C", start_date=from, end_date=to, verbose=verbose) #Chicago Corn CME_S <- quandClean("CHRIS/CME_S", start_date=from, end_date=to, verbose=verbose) #Chicago Soybeans CME_W <- quandClean("CHRIS/CME_W", start_date=from, end_date=to, verbose=verbose) #Chicago Wheat CME_SM <- quandClean("CHRIS/CME_SM", start_date=from, end_date=to, verbose=verbose) #Chicago Soybean Meal CME_KW <- quandClean("CHRIS/CME_KW", start_date=from, end_date=to, verbose=verbose) #Kansas City Wheat CME_BO <- quandClean("CHRIS/CME_BO", start_date=from, end_date=to, verbose=verbose) #Chicago Soybean Oil #Softs ICE_SB <- quandClean("CHRIS/ICE_SB", start_date=from, end_date=to, verbose=verbose) #Sugar ICE_KC <- quandClean("CHRIS/ICE_KC", start_date=from, end_date=to, verbose=verbose) #Coffee ICE_CC <- quandClean("CHRIS/ICE_CC", start_date=from, end_date=to, verbose=verbose) #Cocoa ICE_CT <- quandClean("CHRIS/ICE_CT", start_date=from, end_date=to, verbose=verbose) #Cotton #Other Ags CME_LC <- quandClean("CHRIS/CME_LC", start_date=from, end_date=to, verbose=verbose) #Live Cattle CME_LN <- quandClean("CHRIS/CME_LN", start_date=from, end_date=to, verbose=verbose) #Lean Hogs #Precious Metals CME_GC <- quandClean("CHRIS/CME_GC", start_date=from, end_date=to, verbose=verbose) #Gold CME_SI <- quandClean("CHRIS/CME_SI", start_date=from, end_date=to, verbose=verbose) #Silver CME_PL <- quandClean("CHRIS/CME_PL", start_date=from, end_date=to, verbose=verbose) #Platinum CME_PA <- quandClean("CHRIS/CME_PA", start_date=from, end_date=to, verbose=verbose) #Palladium #Base CME_HG <- quandClean("CHRIS/CME_HG", start_date=from, end_date=to, verbose=verbose) #Copper #Currencies CME_AD <- quandClean("CHRIS/CME_AD", start_date=from, end_date=to, verbose=verbose) #Ozzie CME_CD <- quandClean("CHRIS/CME_CD", start_date=from, end_date=to, verbose=verbose) #Loonie CME_SF <- quandClean("CHRIS/CME_SF", start_date=from, end_date=to, verbose=verbose) #Franc CME_EC <- quandClean("CHRIS/CME_EC", start_date=from, end_date=to, verbose=verbose) #Euro CME_BP <- quandClean("CHRIS/CME_BP", start_date=from, end_date=to, verbose=verbose) #Cable CME_JY <- quandClean("CHRIS/CME_JY", start_date=from, end_date=to, verbose=verbose) #Yen CME_NE <- quandClean("CHRIS/CME_NE", start_date=from, end_date=to, verbose=verbose) #Kiwi #Equities CME_ES <- quandClean("CHRIS/CME_ES", start_date=from, end_date=to, verbose=verbose) #Emini CME_MD <- quandClean("CHRIS/CME_MD", start_date=from, end_date=to, verbose=verbose) #Midcap 400 CME_NQ <- quandClean("CHRIS/CME_NQ", start_date=from, end_date=to, verbose=verbose) #Nasdaq 100 CME_TF <- quandClean("CHRIS/CME_TF", start_date=from, end_date=to, verbose=verbose) #Russell Smallcap CME_NK <- quandClean("CHRIS/CME_NK", start_date=from, end_date=to, verbose=verbose) #Nikkei #Dollar Index and Bonds/Rates ICE_DX <- quandClean("CHRIS/CME_DX", start_date=from, end_date=to, verbose=verbose) #Dixie #CME_FF <- quandClean("CHRIS/CME_FF", start_date=from, end_date=to, verbose=verbose) #30-day fed funds CME_ED <- quandClean("CHRIS/CME_ED", start_date=from, end_date=to, verbose=verbose) #3 Mo. Eurodollar/TED Spread CME_FV <- quandClean("CHRIS/CME_FV", start_date=from, end_date=to, verbose=verbose) #Five Year TNote CME_TY <- quandClean("CHRIS/CME_TY", start_date=from, end_date=to, verbose=verbose) #Ten Year Note CME_US <- quandClean("CHRIS/CME_US", start_date=from, end_date=to, verbose=verbose) #30 year bond } CMEinsts <- c("CL", "NG", "HO", "RB", "C", "S", "W", "SM", "KW", "BO", "LC", "LN", "GC", "SI", "PL", "PA", "HG", "AD", "CD", "SF", "EC", "BP", "JY", "NE", "ES", "MD", "NQ", "TF", "NK", #"FF", "ED", "FV", "TY", "US") ICEinsts <- c("B", "G", "SB", "KC", "CC", "CT", "DX") CME <- paste("CME", CMEinsts, sep="_") ICE <- paste("ICE", ICEinsts, sep="_") symbols <- c(CME, ICE) stock(symbols, currency="USD", multiplier=1) t2 <- Sys.time() print(t2-t1)
Note that you need your own quandl authorization token. However, beyond that, this process takes around 5 minutes or so to complete, so similarly to my demoData.R file, it functions based off of whether or not CME_CL (that is, the price history for crude oil) is present in your working environment.
The from (“yyyy-mm-dd”), to (same), and verbose (TRUE or FALSE) variables will be variables to set in a demo file, so you’ll have to input them yourself. Beyond that, you simply source this file, and you’ll have a large amount of futures data on which to run trading strategies. They don’t necessarily even have to be quantstrat types of trading strategies, as these are simply xts objects. I commented out CME_FF because it generally is something that is characterized by rare spikes as opposed to steady and consistent price movements.
Granted, I cannot vouch that this data will be perfect (probably a long way from it, considering that quandl isn’t the greatest source of it), but it *is* free, so for anyone who wishes to do any backtesting on futures data, well, here you go. Also, I may edit which exact instruments I use in the future if there are continuing data issues.
Thanks for reading.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.