[This article was first published on Wiekvoet, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
As final post on European MEPs voting I wanted to look at the individual MEP. The variables examined are how often present and how often present but not voted. The latter might be a marker of sign in and slope off. The analysis chosen is a hierarchical Bayesian analysis, which should push individual’s outcomes towards the population behavior.Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
As mentioned before, votewatch’s data describe how often MEPs voted what in the European Parliament. For each MEP the number of votes, percentages Yes, No, Abstain, number of elections and number of elections not voted. A description of the data can be found in this pdf.
Reading data
Data read as previously. All code shown at end of the post.
Modelling Data
Initially I wanted to use a beta binomial model as the beta distribution is the conjugate prior for the binomial and often seen in the text books. Then I realized the usual approach would be using the logit transformation. The wish to compare the two approaches lead me to adding the probit and finally a different way to calculate the beta binomial. Calculations are done in Jags. In text the models are displayed, end of text is full code. The number of samples is chosen 1000, which is more than needed for interpretation of the data, but with the comparison between methods a few extra samples seemed nice.
Model 1: beta binomial
The model is simple enough not to need much explanation. Priors on a and b are intended to be non-informative.
mbb1 <- function() {
for (i in 1:N) {
nchosen[i] ~ dbin(p[i],nvotes[i])
p[i] ~ dbeta(a,b)
}
a ~ dexp(.001)
b ~ dexp(.001)
}
Model 2: Beta binomial
The thought leading to this specification is that with beta distribution conjugate prior, it should be possible to calculate posteriour distributions for probabilities outside of Jags, thereby saving Jags a bit of time and saving a load of data transfer between Jags and R.
mbb2 <- function() {
for (i in 1:N) {
nchosen[i] ~ dbetabin(a,b,nvotes[i])
}
a ~ dexp(.001)
b ~ dexp(.001)
}
Model 3: Logit
The model is reasonable straigthforward. The awkward names for mean and sd, ap and asd respectively, are chosen thus so samples can be extracted similar to model 1.
mlogit <- function() {
for (i in 1:N) {
nchosen[i] ~ dbin(p[i],nvotes[i])
logit(p[i]) <- lp[i]
lp[i] ~ dnorm(ap,tau)
}
ap ~ dnorm(0,.001)
tau <- pow(asd,-2)
asd ~dunif(0,10)
}
Model 4: Probit
This is just replacing logit() by probit().
mprobit <- mlogit <- function() {
for (i in 1:N) {
nchosen[i] ~ dbin(p[i],nvotes[i])
logit(p[i]) <- lp[i]
lp[i] ~ dnorm(ap,tau)
}
ap ~ dnorm(0,.001)
tau <- pow(asd,-2)
asd ~dunif(0,10)
}
Results
Presence of MEPs
The beta distribution obtained shows that most of the MEPs are signed in. MEPs with more that 20% of the votes not singed in are rare.
The best performing MEPs are shown below for beta binomial 1, logit and probit model are shown below. The results show different MEPs for each calculation. This is an artifact due to using a sampler, these MEPs are way to close to each other for meaningful ordering
beta-binomial Last.Name First.Name National.Party
463 STAVRAKAKIS Georgios Panhellenic Socialist Movement
218 JEGGLE Elisabeth Christlich Demokratische Union Deutschlands
80 AUDY Jean-Pierre Union pour un Mouvement Populaire
452 DESS Albert Christlich-Soziale Union in Bayern e.V.
273 LISEK Krzysztof Platforma Obywatelska
372 ZEMKE Janusz Władysław Sojusz Lewicy Demokratycznej
Mean p5 p95
463 0.001439957 4.612416e-05 0.004372737
218 0.001450050 3.465712e-05 0.004839997
80 0.001470705 4.752273e-05 0.004617277
452 0.001491458 3.185192e-05 0.005023073
273 0.001497189 4.672592e-05 0.004592358
372 0.001499812 5.112743e-05 0.004861630
logit Last.Name First.Name Mean p5 p95
57 BACH Georges 0.002845830 0.0005561477 0.006789563
514 LUDVIGSSON Olle 0.002854100 0.0005746037 0.006441176
548 SCHALDEMOSE Christel 0.002882655 0.0006066471 0.006735655
372 ZEMKE Janusz Władysław 0.002925083 0.0006555610 0.006699789
85 SCHWAB Andreas 0.002927801 0.0006034058 0.007039026
273 LISEK Krzysztof 0.002940536 0.0006825662 0.007001949
Probit Last.Name First.Name Mean p5 p95
687 EHRENHAUSER Martin 0.002929976 0.0006652270 0.006671044
57 BACH Georges 0.002935575 0.0006351852 0.006839898
98 MATULA Iosif 0.002947576 0.0006889951 0.006754586
449 CERCAS Alejandro 0.002953899 0.0006167549 0.007239345
564 BELDER Bastiaan 0.002961148 0.0006210927 0.007109177
184 LANGEN Werner 0.002967294 0.0006372111 0.006767979
The worst MEPs are quite different from each other, the calculations yield similar order
Beta-Binomial
Last.Name First.Name
116 TREMATERRA Gino
5 PETROVIĆ JAKOVINA Sandra
734 MORVAI Krisztina
27 VADIM TUDOR Corneliu
396 CROWLEY Brian
60 VITKAUSKAITE BERNARD Justina
National.Party Mean
116 Unione dei Democratici cristiani e dei Democratici di Centro 0.2961918
5 Socijaldemokratska partija Hrvatske 0.2974738
734 JOBBIK MAGYARORSZÁGÉRT MOZGALOM 0.3184573
27 Partidul România Mare 0.3411132
396 Fianna Fáil Party 0.5118451
60 Darbo partija 0.5233919
p5 p95
116 0.2507316 0.3439449
5 0.2031520 0.4045347
734 0.2862299 0.3524033
27 0.3084684 0.3742007
396 0.4744408 0.5481621
60 0.4469903 0.5995429
logit
Last.Name First.Name Mean p5 p95
116 TREMATERRA Gino 0.3010280 0.2535735 0.3496571
734 MORVAI Krisztina 0.3222543 0.2894436 0.3566998
5 PETROVIĆ JAKOVINA Sandra 0.3393291 0.2280846 0.4542476
27 VADIM TUDOR Corneliu 0.3447283 0.3108516 0.3791264
396 CROWLEY Brian 0.5189438 0.4840589 0.5560512
60 VITKAUSKAITE BERNARD Justina 0.5530630 0.4794193 0.6288764
probit
Last.Name First.Name Mean p5 p95
116 TREMATERRA Gino 0.3033747 0.2566566 0.3510163
734 MORVAI Krisztina 0.3217914 0.2889948 0.3545175
5 PETROVIĆ JAKOVINA Sandra 0.3389094 0.2317717 0.4564703
27 VADIM TUDOR Corneliu 0.3461575 0.3142402 0.3773828
396 CROWLEY Brian 0.5193148 0.4849846 0.5543466
60 VITKAUSKAITE BERNARD Justina 0.5556912 0.4837601 0.6299831
Last.Name First.Name
116 TREMATERRA Gino
5 PETROVIĆ JAKOVINA Sandra
734 MORVAI Krisztina
27 VADIM TUDOR Corneliu
396 CROWLEY Brian
60 VITKAUSKAITE BERNARD Justina
National.Party Mean
116 Unione dei Democratici cristiani e dei Democratici di Centro 0.2961918
5 Socijaldemokratska partija Hrvatske 0.2974738
734 JOBBIK MAGYARORSZÁGÉRT MOZGALOM 0.3184573
27 Partidul România Mare 0.3411132
396 Fianna Fáil Party 0.5118451
60 Darbo partija 0.5233919
p5 p95
116 0.2507316 0.3439449
5 0.2031520 0.4045347
734 0.2862299 0.3524033
27 0.3084684 0.3742007
396 0.4744408 0.5481621
60 0.4469903 0.5995429
logit
Last.Name First.Name Mean p5 p95
116 TREMATERRA Gino 0.3010280 0.2535735 0.3496571
734 MORVAI Krisztina 0.3222543 0.2894436 0.3566998
5 PETROVIĆ JAKOVINA Sandra 0.3393291 0.2280846 0.4542476
27 VADIM TUDOR Corneliu 0.3447283 0.3108516 0.3791264
396 CROWLEY Brian 0.5189438 0.4840589 0.5560512
60 VITKAUSKAITE BERNARD Justina 0.5530630 0.4794193 0.6288764
probit
Last.Name First.Name Mean p5 p95
116 TREMATERRA Gino 0.3033747 0.2566566 0.3510163
734 MORVAI Krisztina 0.3217914 0.2889948 0.3545175
5 PETROVIĆ JAKOVINA Sandra 0.3389094 0.2317717 0.4564703
27 VADIM TUDOR Corneliu 0.3461575 0.3142402 0.3773828
396 CROWLEY Brian 0.5193148 0.4849846 0.5543466
60 VITKAUSKAITE BERNARD Justina 0.5556912 0.4837601 0.6299831
Second binomial
name mean q05 q95
[1,] “TREMATERRA” 0.2956197 0.2491403 0.3420113
[2,] “PETROVIĆ JAKOVINA” 0.2998581 0.2078026 0.4042624
[3,] “MORVAI” 0.3183077 0.2855259 0.3524003
[4,] “VADIM TUDOR” 0.3411089 0.3064908 0.3754585
[5,] “CROWLEY” 0.511809 0.4767657 0.5477082
[6,] “VITKAUSKAITE BERNARD” 0.5231093 0.4554704 0.5919841
name mean q05 q95
[1,] “TREMATERRA” 0.2956197 0.2491403 0.3420113
[2,] “PETROVIĆ JAKOVINA” 0.2998581 0.2078026 0.4042624
[3,] “MORVAI” 0.3183077 0.2855259 0.3524003
[4,] “VADIM TUDOR” 0.3411089 0.3064908 0.3754585
[5,] “CROWLEY” 0.511809 0.4767657 0.5477082
[6,] “VITKAUSKAITE BERNARD” 0.5231093 0.4554704 0.5919841
It thus seems that beta binomial have slightly different outcomes than logit and probit, with beta-binomial giving slightly smaller parameter values. The shift for PETROVIĆ JAKOVINA is due to less data. It appears beta binomial had a stronger effect of the prior.
Last.Name TotalPossible nNotIn
5 PETROVIĆ JAKOVINA 40 15
27 VADIM TUDOR 514 179
734 MORVAI 514 167
Last.Name TotalPossible nNotIn
5 PETROVIĆ JAKOVINA 40 15
27 VADIM TUDOR 514 179
734 MORVAI 514 167
Signed in, not voting
To save duplication, only logit and beta-binomial are shown. It would seem that signing in but not voting is structural, the typical MEP does this a few to 15% of the votes.The best MEPs in this respect include an independent, which did surprise me. As a Dutch voter, having a member of SGP there does not surprise me, while strong Christianity is not my political flavor, they do have a trustworthy reputation many other politician can be jealous of. In terms of logit against beta-binomial, the logit now has lower numbers, which suggests that the beta-binomial again has again more pull toowards the population.
beta binomial
Last.Name First.Name National.Party
350 BŘEZINA Jan Independent
175 GROSSETÊTE Françoise Union pour un Mouvement Populaire
21 MAZEJ KUKOVIČ Zofija Slovenska demokratska stranka
333 BRATKOWSKI Arkadiusz Tomasz Polskie Stronnictwo Ludowe
564 BELDER Bastiaan Staatkundig Gereformeerde Partij
55 PAPANIKOLAOU Georgios Nea Demokratia
Mean p5 p95
350 0.004855719 0.0012133168 0.01027123
175 0.005019880 0.0011882656 0.01056993
21 0.006102050 0.0007614780 0.01547558
333 0.006392797 0.0007950631 0.01628781
564 0.006590296 0.0021129110 0.01337183
55 0.006678283 0.0022042544 0.01360759
logit Last.Name First.Name Mean p5 p95
175 GROSSETÊTE Françoise 0.007681981 0.003254561 0.01387197
350 BŘEZINA Jan 0.007820303 0.003207069 0.01421726
55 PAPANIKOLAOU Georgios 0.008982877 0.003933873 0.01604022
452 DESS Albert 0.009006247 0.003923229 0.01594389
376 CUTAŞ George Sabin 0.009011560 0.003966942 0.01585792
237 CANCIAN Antonio 0.009144514 0.004149473 0.01669278
Finally, the worst politicians in this respect. Note that Jerzy BUZEK was president of the EP 2009-2012, Martin Schultz president of EP since 2012, which probably means they were there but did not vote in that role. Comparing beta-binomial to logit, the beta-binomial again pulls a bit stronger to the population.
binomial
Last.Name First.Name National.Party
686 ZIOBRO Zbigniew Solidarna Polska
492 DÉSIR Harlem Parti Socialiste
766 BLOOM Godfrey United Kingdom Independence Party
418 BAALEN Johannes Cornelis van Volkspartij voor Vrijheid en Democratie
542 SCHULZ Martin Sozialdemokratische Partei Deutschlands
123 BUZEK Jerzy Platforma Obywatelska
Mean p5 p95
686 0.3490508 0.3118425 0.3865028
492 0.3921216 0.3546858 0.4314310
766 0.3928973 0.3527089 0.4342107
418 0.4118334 0.3731467 0.4485519
542 0.4815201 0.4464745 0.5160744
123 0.5878925 0.5531420 0.6217835
logit Last.Name First.Name Mean p5 p95
686 ZIOBRO Zbigniew 0.3567185 0.3177950 0.3941565
492 DÉSIR Harlem 0.4000572 0.3610226 0.4393352
766 BLOOM Godfrey 0.4013182 0.3633043 0.4407786
418 BAALEN Johannes Cornelis van 0.4211575 0.3836522 0.4590419
542 SCHULZ Martin 0.4903926 0.4539334 0.5266999
123 BUZEK Jerzy 0.6003081 0.5642402 0.6344741
Code
library(gdata)
r1 <- read.xls(‘votewatch-europe-yes-no-votes-data-11-december-2013.preprocessed.xls’,
stringsAsFactors=TRUE)
# adapted in source file:
# headers
# number of decimals
# “
# fix a double
r1$National.Party <- as.character(r1$National.Party)
(uu <- unique(r1$National.Party[r1$Country==’Hungary’ &
grepl(‘ri Sz’,r1$National.Party)]))
r1$National.Party[r1$National.Party %in% uu] <- uu[1]
r1$National.Party <- factor(r1$National.Party)
r1$Date <- as.Date(r1$Sdate)
r1$Group <- relevel(r1$Group,’S&D’)
r1$nYES=round(r1$pYES*r1$TotalDone/100)
r1$nNO=round(r1$pNO*r1$TotalDone/100)
r1$nAbstain=round(r1$pAbstain*r1$TotalDone/100)
# 3 vars before sum to TotalDone
r1$nNoVote=round(r1$pNoVote*r1$TotalPossible/100)
r1$nNotIn <- r1$TotalPossible-r1$nNoVote-r1$TotalDone
# 5 vars before sum to TotalPossible
n.iter=1000
library(R2jags)
datain <- list(nchosen=r1$nNotIn,
nvotes=r1$TotalPossible,
N=nrow(r1))
mbb1 <- function() {
for (i in 1:N) {
nchosen[i] ~ dbin(p[i],nvotes[i])
p[i] ~ dbeta(a,b)
}
a ~ dexp(.001)
b ~ dexp(.001)
}
params <- c(‘a’,’b’,’p’)
inits <- function() {
list(a=runif(1,0,5),
b=runif(1,0,5),
p=runif(datain$N,0,1))
}
jfbb1 <- jags(datain,
model=mbb1,
inits=inits,
parameters=params,
progress.bar=”gui”,
n.iter=n.iter)
pd <- seq(0,1,by=.01)
png(‘plotbb1.png’)
plot(dbeta(pd,
mean(jfbb1$BUGSoutput$sims.matrix[,1]),
mean(jfbb1$BUGSoutput$sims.matrix[,2])),
x=pd,
type=’l’,
main=’MEPs signing in’,
xlab=’Proportion not signed in’,
ylab=’MEP Density’)
dev.off()
##############
mbb2 <- function() {
for (i in 1:N) {
nchosen[i] ~ dbetabin(a,b,nvotes[i])
}
a ~ dexp(.001)
b ~ dexp(.001)
}
params2 <- c(‘a’,’b’)
inits2 <- function() {
list(a=runif(1,0,5),
b=runif(1,0,5))
}
jfbb2 <- jags(datain,
model=mbb2,
inits=inits2,
parameters=params2,
progress.bar=”gui”,
n.iter=n.iter)
res2 <- subset(r1,,c(
Last.Name,
First.Name,
Country,
Group,
National.Party,
nNotIn,
TotalPossible))
res2 <- merge(res2,
data.frame(a=jfbb2$BUGSoutput$sims.matrix[,1],
b=jfbb2$BUGSoutput$sims.matrix[,2]))
res2$p <- rbeta(
nrow(res2),
res2$a+res2$nNotIn,
res2$b+res2$TotalPossible-res2$nNotIn)
##############
mlogit <- function() {
for (i in 1:N) {
nchosen[i] ~ dbin(p[i],nvotes[i])
logit(p[i]) <- lp[i]
lp[i] ~ dnorm(ap,tau)
}
ap ~ dnorm(0,.001)
tau <- pow(asd,-2)
asd ~dunif(0,10)
}
paramslp <- c(‘ap’,’asd’,’p’)
initslp <- function() {
list(ap=rnorm(1,0),
asd=runif(1,0,10),
lp=rnorm(datain$N,0,1))
}
jflogit <- jags(datain,
model=mlogit,
inits=initslp,
parameters=paramslp,
progress.bar=”gui”,
n.iter=n.iter)
mprobit <- mlogit <- function() {
for (i in 1:N) {
nchosen[i] ~ dbin(p[i],nvotes[i])
logit(p[i]) <- lp[i]
lp[i] ~ dnorm(ap,tau)
}
ap ~ dnorm(0,.001)
tau <- pow(asd,-2)
asd ~dunif(0,10)
}
jfprobit <- jags(datain,
model=mprobit,
inits=initslp,
parameters=paramslp,
progress.bar=”gui”,
n.iter=n.iter)
# dispay results
makres <- function(bf) {
sm <- bf$BUGSoutput$sims.matrix[,-(1:3)]
res <- r1[,c(1,2,3,5)]
res$Mean <- apply(sm,2,mean)
res$p5 <- apply(sm,2,quantile,p=.05)
res$p95 <- apply(sm,2,quantile,p=.95)
res <- res[order(res$Mean),]
}
rbb1 <- makres(jfbb1)
rlogit <- makres(jflogit)
rprobit <- makres(jfprobit)
head(rbb1[,-3])
head(rlogit[,-(3:4)])
head(rprobit[,-(3:4)])
tail(rbb1[,-3])
tail(rlogit[,-(3:4)])
tail(rprobit[,-(3:4)])
t(sapply(rbb1$Last.Name[761:766],function(x) {
mm=mean(res2$p[res2$Last.Name==x])
qq=quantile(res2$p[res2$Last.Name==x],c(0.05,0.95))
list(name=as.character(x),mean=mm,q05=qq[1],q95=qq[2])
}
))
r1[r1$Last.Name %in% rbb1$Last.Name[762:764],c(1,11,18)]
####################
datain2 <- list(nchosen=r1$nNoVote,
nvotes=r1$TotalPossible-r1$nNotIn,
N=nrow(r1))
jfbbnv <- jags(datain2,
model=mbb1,
inits=inits,
parameters=params,
progress.bar=”gui”,
n.iter=n.iter)
jflogitnv <- jags(datain2,
model=mlogit,
inits=initslp,
parameters=paramslp,
progress.bar=”gui”,
n.iter=n.iter)
png(‘novote.png’)
plot(dbeta(pd,
mean(jfbbnv$BUGSoutput$sims.matrix[,1]),
mean(jfbbnv$BUGSoutput$sims.matrix[,2])),
x=pd,
type=’l’,
main=’MEPs not voting’,
xlab=’Proportion not voting’,
ylab=’MEP Density’)
dev.off()
rbbnv <- makres(jfbbnv)
rlogitnv <- makres(jflogitnv)
head(rbbnv[,-3])
head(rlogitnv[,-(3:4)])
tail(rbbnv[,-3])
tail(rlogitnv[,-(3:4)])
To leave a comment for the author, please follow the link and comment on their blog: Wiekvoet.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.