Site icon R-bloggers

rnoaa – Access to NOAA National Climatic Data Center data

[This article was first published on rOpenSci Blog - R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

We recently pushed the first version of rnoaa to CRAN – version 0.1. NOAA has a lot of data, some of which is provided via the National Climatic Data Center, or NCDC. NOAA has provided access to NCDC climate data via a RESTful API – which is great because people like us can create clients for different programming languages to access their data programatically. If you are so inclined to write a bit of R code, this means you can get to NCDC data in the R environment where your workflow is reproducible, and you can connect data acquisition to a suite of tools for data manipulation (e.g., plyr), visualization (e.g., ggplot2), and statistics (e.g., lme4, etc.).

In addition to NCDC climate data, we have functions to access sea ice cover data via FTP, as well as the Severe Weather Data Inventory (SWDI) via API. We will continue to add in other data sources as we have time.

Some notes:

The below examples uses the development version, but most things can be done with the CRAN version. Here's a quick run down of some things you can do with rnoaa:

First, install and load taxize

install.packages("rnoaa")

or development version from GitHub

install.packages("devtools")
library(devtools)
install_github("rnoaa", "ropensci")
library(rnoaa)

library(rnoaa)

API keys – authentication

You'll need an API key to use this package (essentially a password). Go to the NCDC website to get one. You can't use this package without an API key.

Once you obtain a key, there are two ways to use it.

a) Pass it inline with each function call (somewhat cumbersome and wordy)

noaa(datasetid = "PRECIP_HLY", locationid = "ZIP:28801", datatypeid = "HPCP", 
    limit = 5, token = "YOUR_TOKEN")

b) Alternatively, you might find it easier to set this as an option, either by adding this line to the top of a script or somewhere in your .Rprofile file

options(noaakey = "KEY_EMAILED_TO_YOU")

Specifically use the name noaakey as the functions in the rnoaa package are looking for a key by that name.

Fetch list of city locations in descending order

noaa_locs(locationcategoryid = "CITY", sortfield = "name", sortorder = "desc", 
    limit = 5)

## $meta
## $meta$totalCount
## [1] 1654
## 
## $meta$pageCount
## [1] 5
## 
## $meta$offset
## [1] 1
## 
## 
## $data
##              id           name datacoverage    mindate    maxdate
## 1 CITY:NL000012     Zwolle, NL       1.0000 1892-08-01 2014-01-31
## 2 CITY:SZ000007     Zurich, SZ       1.0000 1901-01-01 2014-03-11
## 3 CITY:NG000004     Zinder, NG       0.8678 1906-01-01 1980-12-31
## 4 CITY:UP000025  Zhytomyra, UP       0.9726 1938-01-01 2014-03-11
## 5 CITY:KZ000017 Zhezkazgan, KZ       0.9279 1948-03-01 2014-03-10
## 
## attr(,"class")
## [1] "noaa_locs"

Get info on a station by specifcying a dataset, locationtype, location, and station

noaa_stations(datasetid = "GHCND", locationid = "FIPS:12017", stationid = "GHCND:USC00084289")

## $meta
## NULL
## 
## $data
##                  id                  name datacoverage    mindate
## 1 GHCND:USC00084289 INVERNESS 3 SE, FL US            1 1899-02-01
##      maxdate
## 1 2014-03-12
## 
## attr(,"class")
## [1] "noaa_stations"

Search for data

out <- noaa(datasetid = "GHCND", stationid = "GHCND:USW00014895", datatypeid = "PRCP", 
    startdate = "2010-05-01", enddate = "2010-10-31")

See a data.frame

head(out$data)

##             station value attributes datatype                date
## 1 GHCND:USW00014895     0  T,,0,2400     PRCP 2010-05-01T00:00:00
## 2 GHCND:USW00014895    30   ,,0,2400     PRCP 2010-05-02T00:00:00
## 3 GHCND:USW00014895    51   ,,0,2400     PRCP 2010-05-03T00:00:00
## 4 GHCND:USW00014895     0  T,,0,2400     PRCP 2010-05-04T00:00:00
## 5 GHCND:USW00014895    18   ,,0,2400     PRCP 2010-05-05T00:00:00
## 6 GHCND:USW00014895    30   ,,0,2400     PRCP 2010-05-06T00:00:00

Get table of all datasets

res <- noaa_datasets()
res$data

##                     uid         id                    name datacoverage
## 1  gov.noaa.ncdc:C00040     ANNUAL        Annual Summaries         1.00
## 2  gov.noaa.ncdc:C00861      GHCND         Daily Summaries         1.00
## 3  gov.noaa.ncdc:C00841    GHCNDMS       Monthly Summaries         1.00
## 4  gov.noaa.ncdc:C00345    NEXRAD2         Nexrad Level II         0.95
## 5  gov.noaa.ncdc:C00708    NEXRAD3        Nexrad Level III         0.95
## 6  gov.noaa.ncdc:C00821 NORMAL_ANN Normals Annual/Seasonal         1.00
## 7  gov.noaa.ncdc:C00823 NORMAL_DLY           Normals Daily         1.00
## 8  gov.noaa.ncdc:C00824 NORMAL_HLY          Normals Hourly         1.00
## 9  gov.noaa.ncdc:C00822 NORMAL_MLY         Normals Monthly         1.00
## 10 gov.noaa.ncdc:C00505  PRECIP_15 Precipitation 15 Minute         0.25
## 11 gov.noaa.ncdc:C00313 PRECIP_HLY    Precipitation Hourly         1.00
##       mindate    maxdate
## 1  1831-02-01 2013-11-01
## 2  1763-01-01 2014-03-13
## 3  1763-01-01 2014-01-01
## 4  1991-06-05 2014-03-12
## 5  1994-05-20 2014-03-09
## 6  2010-01-01 2010-01-01
## 7  2010-01-01 2010-12-31
## 8  2010-01-01 2010-12-31
## 9  2010-01-01 2010-12-01
## 10 1970-05-12 2013-03-01
## 11 1900-01-01 2013-03-01

Get data category data and metadata

noaa_datacats(locationid = "CITY:US390029", limit = 5)

## $meta
## $meta$totalCount
## [1] 37
## 
## $meta$pageCount
## [1] 5
## 
## $meta$offset
## [1] 1
## 
## 
## $data
##        id                 name
## 1  ANNAGR  Annual Agricultural
## 2   ANNDD   Annual Degree Days
## 3 ANNPRCP Annual Precipitation
## 4 ANNTEMP   Annual Temperature
## 5   AUAGR  Autumn Agricultural
## 
## attr(,"class")
## [1] "noaa_datacats"

Plotting

Plot data, super simple, but it's a start

out <- noaa(datasetid = "GHCND", stationid = "GHCND:USW00014895", datatypeid = "PRCP", 
    startdate = "2010-05-01", enddate = "2010-10-31", limit = 500)
noaa_plot(out, breaks = "1 month", dateformat = "%d/%m")

More plotting

You can pass many outputs from calls to the noaa function in to the noaa_plot function.

out1 <- noaa(datasetid = "GHCND", stationid = "GHCND:USW00014895", datatypeid = "PRCP", 
    startdate = "2010-03-01", enddate = "2010-05-31", limit = 500)
out2 <- noaa(datasetid = "GHCND", stationid = "GHCND:USW00014895", datatypeid = "PRCP", 
    startdate = "2010-09-01", enddate = "2010-10-31", limit = 500)
noaa_plot(out1, out2, breaks = "45 days")

Sea ice cover data

Get urls for ftp files

urls <- sapply(seq(1979, 1990, 1), function(x) seaiceeurls(yr = x, mo = "Feb", 
    pole = "S"))

Call the noaa_seaice function on each url, which downloads shape files, and reads them in to R as sp objects

out <- lapply(urls, noaa_seaice)

Then plot

library(plyr)
library(ggplot2)
names(out) <- seq(1979, 1990, 1)
df <- ldply(out)
ggplot(df, aes(long, lat, group = group)) + geom_polygon(fill = "steelblue") + 
    theme_ice() + facet_wrap(~.id)

Severe weather data

Search for nx3tvs data from 5 May 2006 to 6 May 2006

noaa_swdi(dataset = "nx3tvs", startdate = "20060505", enddate = "20060506", 
    limit = 3)

## $meta
## $meta$totalCount
## [1] 3
## 
## $meta$totalTimeInSeconds
## [1] 0.004
## 
## 
## $data
##                  ztime wsr_id cell_id cell_type range azimuth max_shear
## 1 2006-05-05T00:05:50Z   KBMX      Q0       TVS     7     217       403
## 2 2006-05-05T00:10:02Z   KBMX      Q0       TVS     5     208       421
## 3 2006-05-05T00:12:34Z   KSJT      P2       TVS    49     106        17
##   mxdv
## 1  116
## 2  120
## 3   52
## 
## $shape
##                                        shape
## 1 POINT (-86.8535716274277 33.0786326913943)
## 2 POINT (-86.8165772540846 33.0982820681588)
## 3 POINT (-99.5771091971025 31.1421609654838)
## 
## attr(,"class")
## [1] "noaa_swdi"

Get all 'plsr' within the bounding box (-91,30,-90,31)

noaa_swdi(dataset = "plsr", startdate = "20060505", enddate = "20060510", bbox = c(-91, 
    30, -90, 31), limit = 3)

## $meta
## $meta$totalCount
## [1] 3
## 
## $meta$totalTimeInSeconds
## [1] 0.015
## 
## 
## $data
##                  ztime     id        event magnitude         city
## 1 2006-05-09T02:20:00Z 427540         HAIL         1 5 E KENTWOOD
## 2 2006-05-09T02:40:00Z 427536         HAIL         1 MOUNT HERMAN
## 3 2006-05-09T02:40:00Z 427537 TSTM WND DMG     -9999 MOUNT HERMAN
##       county state          source
## 1 TANGIPAHOA    LA TRAINED SPOTTER
## 2 WASHINGTON    LA TRAINED SPOTTER
## 3 WASHINGTON    LA TRAINED SPOTTER
## 
## $shape
##                  shape
## 1 POINT (-90.43 30.93)
## 2  POINT (-90.3 30.96)
## 3  POINT (-90.3 30.96)
## 
## attr(,"class")
## [1] "noaa_swdi"

Get all 'nx3tvs' within the tile -102.1/32.6

noaa_swdi(dataset = "nx3tvs", startdate = "20060506", enddate = "20060507", 
    tile = c(-102.12, 32.62), limit = 3)

## $meta
## $meta$totalCount
## [1] 3
## 
## $meta$totalTimeInSeconds
## [1] 0.021
## 
## 
## $data
##                  ztime wsr_id cell_id cell_type range azimuth max_shear
## 1 2006-05-06T00:41:29Z   KMAF      D9       TVS    37       6        39
## 2 2006-05-06T03:56:18Z   KMAF      N4       TVS    39       3        30
## 3 2006-05-06T03:56:18Z   KMAF      N4       TVS    42       4        20
##   mxdv
## 1   85
## 2   73
## 3   52
## 
## $shape
##                                        shape
## 1 POINT (-102.112726356403 32.5574494581267)
## 2  POINT (-102.14873079873 32.5933553250156)
## 3 POINT (-102.131167022161 32.6426287452898)
## 
## attr(,"class")
## [1] "noaa_swdi"

Counts

Get number of 'nx3tvs' within 15 miles of latitude = 32.7 and longitude = -102.0

noaa_swdi(dataset = "nx3tvs", startdate = "20060505", enddate = "20060516", 
    radius = 15, center = c(-102, 32.7), stat = "count")

## $meta
## $meta$totalCount
## [1] 1
## 
## $meta$totalTimeInSeconds
## [1] 0.02
## 
## 
## $data
## [1] "37"
## 
## $shape
## data frame with 0 columns and 1 rows
## 
## attr(,"class")
## [1] "noaa_swdi"

To leave a comment for the author, please follow the link and comment on their blog: rOpenSci Blog - R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.