Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
I want to follow up the Intraday data post with testing the Probabilistic Momentum strategy on Intraday data. I will use Intraday data for SPY and GLD from the Bonnot Gang to test the strategy.
############################################################################## # Load Systematic Investor Toolbox (SIT) # http://systematicinvestor.wordpress.com/systematic-investor-toolbox/ ############################################################################### setInternet2(TRUE) con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb')) source(con) close(con) #***************************************************************** # Load historical data #****************************************************************** load.packages('quantmod') # data from http://thebonnotgang.com/tbg/historical-data/ # please save SPY and GLD 1 min data at the given path spath = 'c:/Desktop/' data = bt.load.thebonnotgang.data('SPY,GLD', spath) data1 <- new.env() data1$FI = data$GLD data1$EQ = data$SPY data = data1 bt.prep(data, align='keep.all', fill.gaps = T) lookback.len = 120 confidence.level = 60/100 prices = data$prices ret = prices / mlag(prices) - 1 models = list() #***************************************************************** # Simple Momentum #****************************************************************** momentum = prices / mlag(prices, lookback.len) data$weight[] = NA data$weight$EQ[] = momentum$EQ > momentum$FI data$weight$FI[] = momentum$EQ <= momentum$FI models$Simple = bt.run.share(data, clean.signal=T) #***************************************************************** # Probabilistic Momentum + Confidence Level # http://cssanalytics.wordpress.com/2014/01/28/are-simple-momentum-strategies-too-dumb-introducing-probabilistic-momentum/ # http://cssanalytics.wordpress.com/2014/02/12/probabilistic-momentum-spreadsheet/ #****************************************************************** ir = sqrt(lookback.len) * runMean(ret$EQ - ret$FI, lookback.len) / runSD(ret$EQ - ret$FI, lookback.len) momentum.p = pt(ir, lookback.len - 1) data$weight[] = NA data$weight$EQ[] = iif(cross.up(momentum.p, confidence.level), 1, iif(cross.dn(momentum.p, (1 - confidence.level)), 0,NA)) data$weight$FI[] = iif(cross.dn(momentum.p, (1 - confidence.level)), 1, iif(cross.up(momentum.p, confidence.level), 0,NA)) models$Probabilistic = bt.run.share(data, clean.signal=T) data$weight[] = NA data$weight$EQ[] = iif(cross.up(momentum.p, confidence.level), 1, iif(cross.up(momentum.p, (1 - confidence.level)), 0,NA)) data$weight$FI[] = iif(cross.dn(momentum.p, (1 - confidence.level)), 1, iif(cross.up(momentum.p, confidence.level), 0,NA)) models$Probabilistic.Leverage = bt.run.share(data, clean.signal=T) #***************************************************************** # Create Report #****************************************************************** strategy.performance.snapshoot(models, T)
Next, let’s examine the hourly perfromance of the strategy.
#***************************************************************** # Hourly Performance #****************************************************************** strategy.name = 'Probabilistic.Leverage' ret = models[[strategy.name]]$ret ret.number = 100*as.double(ret) dates = index(ret) factor = format(dates, '%H') layout(1:2) par(mar=c(4,4,1,1)) boxplot(tapply(ret.number, factor, function(x) x),outline=T, main=paste(strategy.name, 'Distribution of Returns'), las=1) barplot(tapply(ret.number, factor, function(x) sum(x)), main=paste(strategy.name, 'P&L by Hour'), las=1)
There are lots of abnormal returns in the 9:30-10:00am box due to big overnight returns. I.e. a return from today’s open to prior’s day close. If we exclude this observation every day, the distribution each hour is more consistent.
#***************************************************************** # Hourly Performance: Remove first return of the day (i.e. overnight) #****************************************************************** day.stat = bt.intraday.day(dates) ret.number[day.stat$day.start] = 0 layout(1:2) par(mar=c(4,4,1,1)) boxplot(tapply(ret.number, factor, function(x) x),outline=T, main=paste(strategy.name, 'Distribution of Returns'), las=1) barplot(tapply(ret.number, factor, function(x) sum(x)), main=paste(strategy.name, 'P&L by Hour'), las=1)
The strategy performs best in the morning and dwindles down in the afternoon and overnight.
These hourly seasonality plots are just a different way to analyze performance of the strategy based on Intraday data.
To view the complete source code for this example, please have a look at the bt.strategy.intraday.thebonnotgang.test() function in bt.test.r at github.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.