Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
targ=function(y){ exp(-y^2)/(1.52*sqrt(1+y^2))} T=10^5 Eps=3 ys=xs=rep(runif(1),T) xs[1]=sqrt(1+ys[1]^2) for (t in 2:T){ propy=runif(1,-Eps,Eps)+ys[t-1] propx=sqrt(1+propy^2) ace=(runif(1)<(dnorm(propy)*dnorm(propx))/ (dnorm(ys[t-1])*dnorm(xs[t-1]))) if (ace){ ys[t]=propy;xs[t]=propx }else{ ys[t]=ys[t-1];xs[t]=xs[t-1]}}
If instead we add the proper Jacobian as in
ace=(runif(1)<(dnorm(propy)*dnorm(propx)/propx)/ (dnorm(ys[t-1])*dnorm(xs[t-1])/xs[t-1]))
the fit is there. My open question is how to make this derivation generic, i.e. without requiring the (dreaded) computation of the (dreadful) Jacobian.
Filed under: R, Statistics Tagged: conditional density, Hastings-Metropolis sampler, Jacobian, MCMC, measure theory, measure zero set, projected measure, random walk
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.