Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
ggtern 1.0.3.1 has introduced a new series of geometries to represent known errors in data, they are relatively easy to use and are along the lines of the geom_errorbar(...)
and geom_errorbarh(...)
geometries in ggplot2.
Analagous the errorbars in ggplot2, in ggtern, the new geometries [and additional required mappings] are thus listed as follows:
- geom_errorbarT(…) [Tmin, Tmax]
- geom_errorbarL(…) [Lmin, Lmax]
- geom_errorbarR(…) [Rmin, Rmax]
These three geometries represent errors relative to the Top, Left and Right apex species, respectively.
Example of Ternary Errorbar Usage
To start with, let us prepare some data:
# Load the data data(Feldspar) IX = c('Ab', 'An', 'Or') #Error bar width width <- 0.01 #Create error data +- 5% for (ix in IX) { Feldspar[, paste0(ix, '_min')] = pmax(Feldspar[, ix] - 5, 0) Feldspar[, paste0(ix, '_max')] = pmin(Feldspar[, ix] + 5, 100) } #Helper mytitle <- function(x){ ggtitle(paste('Demonstration of: geom_errorbar',x,'(...)',sep="")) } # Set the theme for subsequent plots theme_set(theme_bw())
Top species error bars can be produced with the following:
ggtern(data = Feldspar, aes(x = Ab, y = An, z = Or)) + geom_errorbarT(aes(Tmin = An_min, Tmax = An_max, width = width), color = 'darkred') + geom_point() + mytitle("T")
Left species error bars can be produced in exactly the same manner:
ggtern(data = Feldspar, aes(x = Ab, y = An, z = Or)) + geom_errorbarL(aes(Lmin = Ab_min, Lmax = Ab_max, width = width), color = 'darkblue') + geom_point() + mytitle("L")
Right species error bars, you guessed it, same again:
ggtern(data = Feldspar, aes(x = Ab, y = An, z = Or)) + geom_errorbarR(aes(Rmin = Or_min, Rmax = Or_max, width = width), color = 'darkgreen') + geom_point() + mytitle("R")
Voila!
The post New Geometry – Ternary Errorbars appeared first on ggtern: ternary diagrams in R.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.