Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
I asked my friend Anirban Das Gupta from Purdue University are the exact value of this probability and the first thing he pointed out was that I used a different meaning of “within 4″. He then went into an elaborate calculation to find an upper bound on this probability, upper bound that was way above my Monte Carlo approximation and my rough calculation of last post. I rechecked my R code and found it was not achieving the right approximation since one date was within 3 days of three other days, at least… I thus rewrote the following R code
T=10^6 four=rep(0,T) for (t in 1:T){ day=sort(sample(1:365,30,rep=TRUE)) #30 random days day=c(day,day[day>363]-365) #account for toric difference tem=outer(day,day,"-") four[t]=(max(apply(((tem>-1)&(tem<4)),1,sum)>3)) } mean(four)
[checked it was ok for two dates within 1 day, resulting in the birthday problem probability] and found 0.070214, which is much larger than the earlier value and shows it takes an average 14 years for the “unlikely” event to happen! And the chances that it happens within seven years is 40%.
Another coincidence relates to this evaluation, namely the fact that two elderly couples in France committed couple suicide within three days, last week. I however could not find the figures for the number of couple suicides per year. Maybe because it is extremely rare. Or undetected…
Filed under: Books, R, Statistics, Travel Tagged: birthday problem, coincidence, Conan Doyle, mass murders, Pittsburgh, Richard von Mises, The Sign of Four, Toronto, USA Today
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.