Site icon R-bloggers

Simudidactic

[This article was first published on bayesianbiologist » Rstats, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

auto·di·dact n.
A self-taught person.
From Greek autodidaktosself-taught : auto-auto- + didaktostaught;

+

sim·u·late v.
To create a representation or model of (a physical system or particular situation, for example).
From Latin simulre, simult-, from similislike;

=
(If you can get past the mixing of Latin and Greek roots)

sim·u·di·dactic adj.
To learn by creating a representation or model of a physical system or particular situation. Particularly, using in silico computation to understand complex systems and phenomena.

———————————————————————

This concept has been floating around in my head for a little while. I’ve written before on how I believe that simulation can be used to improve one’s understanding of just about anything, but have never had a nice shorthand for this process.

Simudidactic inquiry is the process of understanding aspects of the world by abstracting them into a computational model, then conducting experiments in this model world by changing the underlying properties and parameters. In this way, one can ask questions like:

  1. What type of observations might we make if x were true?
  2. If my model of the process is accurate, can I recapture the underlying parameters given the type of observations I can make in the real world? How often will I be wrong?
  3. Will I be able to distinguish between competing models given the observations I can make in the real world?

In addition to being able to ask these types of questions, the simudidact solidifies their understanding of the model by actually building it.

So go on, get simudidactic and learn via simulation!


To leave a comment for the author, please follow the link and comment on their blog: bayesianbiologist » Rstats.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.