Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
The Metropolis algorithm, and its generalization (Metropolis-Hastings algorithm) provide elegant methods for obtaining sequences of random samples from complex probability distributions. When I first read about modern MCMC methods, I had trouble visualizing the convergence of Markov chains in higher dimensional cases. So, I thought I might put together a visualization in a two-dimensional case.
I’ll use a simple example: estimating a population mean and standard deviation. We’ll define some population level parameters, collect some data, then use the Metropolis algorithm to simulate the joint posterior of the mean and standard deviation.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | # population level parameters mu <- 7 sigma <- 3 # collect some data (e.g. a sample of heights) n <- 50 x <- rnorm(n, mu, sigma) # log-likelihood function ll <- function(x, muhat, sigmahat){ sum(dnorm(x, muhat, sigmahat, log=T)) } # prior densities pmu <- function(mu){ dnorm(mu, 0, 100, log=T) } psigma <- function(sigma){ dunif(sigma, 0, 10, log=T) } # posterior density function (log scale) post <- function(x, mu, sigma){ ll(x, mu, sigma) + pmu(mu) + psigma(sigma) } geninits <- function(){ list(mu = runif(1, 4, 10), sigma = runif(1, 2, 6)) } jump <- function(x, dist = .1){ # must be symmetric x + rnorm(1, 0, dist) } iter = 10000 chains <- 3 posterior <- array(dim = c(chains, 2, iter)) accepted <- array(dim=c(chains, iter - 1)) for (c in 1:chains){ theta.post <- array(dim=c(2, iter)) inits <- geninits() theta.post[1, 1] <- inits$mu theta.post[2, 1] <- inits$sigma for (t in 2:iter){ # theta_star = proposed next values for parameters theta_star <- c(jump(theta.post[1, t-1]), jump(theta.post[2, t-1])) pstar <- post(x, mu = theta_star[1], sigma = theta_star[2]) pprev <- post(x, mu = theta.post[1, t-1], sigma = theta.post[2, t-1]) lr <- pstar - pprev r <- exp(lr) # theta_star is accepted if posterior density is higher w/ theta_star # if posterior density is not higher, it is accepted with probability r # else theta does not change from time t-1 to t accept <- rbinom(1, 1, prob = min(r, 1)) accepted[c, t - 1] <- accept if (accept == 1){ theta.post[, t] <- theta_star } else { theta.post[, t] <- theta.post[, t-1] } } posterior[c, , ] <- theta.post } |
Then, to visualize the evolution of the Markov chains, we can make plots of the chains in 2-parameter space, along with the posterior density at different iterations, joining these plots together using ImageMagick (in the terminal) to create an animated .gif:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | require(sm) seq1 <- seq(1, 300, by=5) seq2 <- seq(300, 500, by=10) seq3 <- seq(500, iter, by=300) sequence <- c(seq1, seq2, seq3) length(sequence) xlims <- c(4, 10) ylims <- c(1, 6) dir.create("metropolis_ex") setwd("metropolis_ex") png(file = "metrop%03d.png", width=700, height=350) for (i in sequence){ par(mfrow=c(1, 2)) plot(posterior[1, 1, 1:i], posterior[1, 2, 1:i], type="l", xlim=xlims, ylim=ylims, col="blue", xlab="mu", ylab="sigma", main="Markov chains") lines(posterior[2, 1, 1:i], posterior[2, 2, 1:i], col="purple") lines(posterior[3, 1, 1:i], posterior[3, 2, 1:i], col="red") text(x=7, y=1.2, paste("Iteration ", i), cex=1.5) sm.density(x=cbind(c(posterior[, 1, 1:i]), c(posterior[, 2, 1:i])), xlab="mu", ylab="sigma", zlab="", zlim=c(0, .7), xlim=xlims, ylim=ylims, col="white") title("Posterior density") } dev.off() system("convert -delay 15 *.png metrop.gif") file.remove(list.files(pattern=".png")) |
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.