Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Initial Remark: Reload this page if formulas don’t display well!
As promised, here is the second part on how to obtain confidence intervals for fitted values obtained from nonlinear regression via nls or nlsLM (package ‘minpack.lm’).
I covered a Monte Carlo approach in http://rmazing.wordpress.com/2013/08/14/predictnls-part-1-monte-carlo-simulation-confidence-intervals-for-nls-models/, but here we will take a different approach: First- and second-order Taylor approximation around
Using Taylor approximation for calculating confidence intervals is a matter of propagating the uncertainties of the parameter estimates obtained from vcov(model) to the fitted value. When using first-order Taylor approximation, this is also known as the “Delta method”. Those familiar with error propagation will know the formula
Heavily underused is the matrix notation of the famous formula above, for which a good derivation can be found at http://www.nada.kth.se/~kai-a/papers/arrasTR-9801-R3.pdf:
where
For highly nonlinear functions we need (at least) a second-order polynomial around
Interestingly, there are also matrix-like notations for the second-order mean and variance in the literature (see http://dml.cz/dmlcz/141418 or http://iopscience.iop.org/0026-1394/44/3/012/pdf/0026-1394_44_3_012.pdf):
Second-order mean:
Second-order variance:
where
Enough theory, for wrapping this all up we need three utility functions:
1) numGrad for calculating numerical first-order partial derivatives.
numGrad <- function(expr, envir = .GlobalEnv) { f0 <- eval(expr, envir) vars <- all.vars(expr) p <- length(vars) x <- sapply(vars, function(a) get(a, envir)) eps <- 1e-04 d <- 0.1 r <- 4 v <- 2 zero.tol <- sqrt(.Machine$double.eps/7e-07) h0 <- abs(d * x) + eps * (abs(x) < zero.tol) D <- matrix(0, length(f0), p) Daprox <- matrix(0, length(f0), r) for (i in 1:p) { h <- h0 for (k in 1:r) { x1 <- x2 <- x x1 <- x1 + (i == (1:p)) * h f1 <- eval(expr, as.list(x1)) x2 <- x2 - (i == (1:p)) * h f2 <- eval(expr, envir = as.list(x2)) Daprox[, k] <- (f1 - f2)/(2 * h[i]) h <- h/v } for (m in 1:(r - 1)) for (k in 1:(r - m)) { Daprox[, k] <- (Daprox[, k + 1] * (4^m) - Daprox[, k])/(4^m - 1) } D[, i] <- Daprox[, 1] } return(D) }
2) numHess for calculating numerical second-order partial derivatives.
numHess <- function(expr, envir = .GlobalEnv) { f0 <- eval(expr, envir) vars <- all.vars(expr) p <- length(vars) x <- sapply(vars, function(a) get(a, envir)) eps <- 1e-04 d <- 0.1 r <- 4 v <- 2 zero.tol <- sqrt(.Machine$double.eps/7e-07) h0 <- abs(d * x) + eps * (abs(x) < zero.tol) Daprox <- matrix(0, length(f0), r) Hdiag <- matrix(0, length(f0), p) Haprox <- matrix(0, length(f0), r) H <- matrix(NA, p, p) for (i in 1:p) { h <- h0 for (k in 1:r) { x1 <- x2 <- x x1 <- x1 + (i == (1:p)) * h f1 <- eval(expr, as.list(x1)) x2 <- x2 - (i == (1:p)) * h f2 <- eval(expr, envir = as.list(x2)) Haprox[, k] <- (f1 - 2 * f0 + f2)/h[i]^2 h <- h/v } for (m in 1:(r - 1)) for (k in 1:(r - m)) { Haprox[, k] <- (Haprox[, k + 1] * (4^m) - Haprox[, k])/(4^m - 1) } Hdiag[, i] <- Haprox[, 1] } for (i in 1:p) { for (j in 1:i) { if (i == j) { H[i, j] <- Hdiag[, i] } else { h <- h0 for (k in 1:r) { x1 <- x2 <- x x1 <- x1 + (i == (1:p)) * h + (j == (1:p)) * h f1 <- eval(expr, as.list(x1)) x2 <- x2 - (i == (1:p)) * h - (j == (1:p)) * h f2 <- eval(expr, envir = as.list(x2)) Daprox[, k] <- (f1 - 2 * f0 + f2 - Hdiag[, i] * h[i]^2 - Hdiag[, j] * h[j]^2)/(2 * h[i] * h[j]) h <- h/v } for (m in 1:(r - 1)) for (k in 1:(r - m)) { Daprox[, k] <- (Daprox[, k + 1] * (4^m) - Daprox[, k])/(4^m - 1) } H[i, j] <- H[j, i] <- Daprox[, 1] } } } return(H) }
And a small function for the matrix trace:
tr <- function(mat) sum(diag(mat), na.rm = TRUE)
1) and 2) are modified versions of the genD function in the “numDeriv” package that can handle expressions.
Now we need the predictNLS function that wraps it all up:
predictNLS <- function( object, newdata, interval = c("none", "confidence", "prediction"), level = 0.95, ... ) { require(MASS, quietly = TRUE) interval <- match.arg(interval) ## get right-hand side of formula RHS <- as.list(object$call$formula)[[3]] EXPR <- as.expression(RHS) ## all variables in model VARS <- all.vars(EXPR) ## coefficients COEF <- coef(object) ## extract predictor variable predNAME <- setdiff(VARS, names(COEF)) ## take fitted values, if 'newdata' is missing if (missing(newdata)) { newdata <- eval(object$data)[predNAME] colnames(newdata) <- predNAME } ## check that 'newdata' has same name as predVAR if (names(newdata)[1] != predNAME) stop("newdata should have name '", predNAME, "'!") ## get parameter coefficients COEF <- coef(object) ## get variance-covariance matrix VCOV <- vcov(object) ## augment variance-covariance matrix for 'mvrnorm' ## by adding a column/row for 'error in x' NCOL <- ncol(VCOV) ADD1 <- c(rep(0, NCOL)) ADD1 <- matrix(ADD1, ncol = 1) colnames(ADD1) <- predNAME VCOV <- cbind(VCOV, ADD1) ADD2 <- c(rep(0, NCOL + 1)) ADD2 <- matrix(ADD2, nrow = 1) rownames(ADD2) <- predNAME VCOV <- rbind(VCOV, ADD2) NR <- nrow(newdata) respVEC <- numeric(NR) seVEC <- numeric(NR) varPLACE <- ncol(VCOV) outMAT <- NULL ## define counter function counter <- function (i) { if (i%%10 == 0) cat(i) else cat(".") if (i%%50 == 0) cat("\n") flush.console() } ## calculate residual variance r <- residuals(object) w <- weights(object) rss <- sum(if (is.null(w)) r^2 else r^2 * w) df <- df.residual(object) res.var <- rss/df ## iterate over all entries in 'newdata' as in usual 'predict.' functions for (i in 1:NR) { counter(i) ## get predictor values and optional errors predVAL <- newdata[i, 1] if (ncol(newdata) == 2) predERROR <- newdata[i, 2] else predERROR <- 0 names(predVAL) <- predNAME names(predERROR) <- predNAME ## create mean vector meanVAL <- c(COEF, predVAL) ## create augmented variance-covariance matrix ## by putting error^2 in lower-right position of VCOV newVCOV <- VCOV newVCOV[varPLACE, varPLACE] <- predERROR^2 SIGMA <- newVCOV ## first-order mean: eval(EXPR), first-order variance: G.S.t(G) MEAN1 <- try(eval(EXPR, envir = as.list(meanVAL)), silent = TRUE) if (inherits(MEAN1, "try-error")) stop("There was an error in evaluating the first-order mean!") GRAD <- try(numGrad(EXPR, as.list(meanVAL)), silent = TRUE) if (inherits(GRAD, "try-error")) stop("There was an error in creating the numeric gradient!") VAR1 <- GRAD %*% SIGMA %*% matrix(GRAD) ## second-order mean: firstMEAN + 0.5 * tr(H.S), ## second-order variance: firstVAR + 0.5 * tr(H.S.H.S) HESS <- try(numHess(EXPR, as.list(meanVAL)), silent = TRUE) if (inherits(HESS, "try-error")) stop("There was an error in creating the numeric Hessian!") valMEAN2 <- 0.5 * tr(HESS %*% SIGMA) valVAR2 <- 0.5 * tr(HESS %*% SIGMA %*% HESS %*% SIGMA) MEAN2 <- MEAN1 + valMEAN2 VAR2 <- VAR1 + valVAR2 ## confidence or prediction interval if (interval != "none") { tfrac <- abs(qt((1 - level)/2, df)) INTERVAL <- tfrac * switch(interval, confidence = sqrt(VAR2), prediction = sqrt(VAR2 + res.var)) LOWER <- MEAN2 - INTERVAL UPPER <- MEAN2 + INTERVAL names(LOWER) <- paste((1 - level)/2 * 100, "%", sep = "") names(UPPER) <- paste((1 - (1- level)/2) * 100, "%", sep = "") } else { LOWER <- NULL UPPER <- NULL } RES <- c(mu.1 = MEAN1, mu.2 = MEAN2, sd.1 = sqrt(VAR1), sd.2 = sqrt(VAR2), LOWER, UPPER) outMAT <- rbind(outMAT, RES) } cat("\n") rownames(outMAT) <- NULL return(outMAT) }
With all functions at hand, we can now got through the same example as used in the Monte Carlo post:
DNase1 <- subset(DNase, Run == 1)
fm1DNase1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal), DNase1)
> predictNLS(fm1DNase1, newdata = data.frame(conc = 5), interval = "confidence")
.
mu.1 mu.2 sd.1 sd.2 2.5% 97.5%
[1,] 1.243631 1.243288 0.03620415 0.03620833 1.165064 1.321511
The errors/confidence intervals are larger than with the MC approch (who knows why?) but it is very interesting to see how close the second-order corrected mean (1.243288) comes to the mean of the simulated values from the Monte Carlo approach (1.243293)!
The two approach (MC/Taylor) will be found in the predictNLS function that will be part of the “propagate” package in a few days at CRAN…
Cheers,
Andrej
Filed under: General, R Internals Tagged: confidence interval, first-order, fitting, Monte Carlo, nls, nonlinear, predict, second-order, Taylor approximation
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.