Exercise in REML/Mixed model

[This article was first published on Wiekvoet, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

I want to build a bit more experience in REML, so I decided to redo some of the SAS examples in R. This post describes the results of example 59.1 (page 5001, SAS(R)/STAT User guide 12.3 link). Following the list from freshbiostats I will analyze using lme4 and MCMCglm.

Data

The data is a split plot design. To quote ‘The split-plot design involves two experimental factors, A and B. Levels of A are randomly assigned to whole plots (main plots), and levels of B are randomly assigned to split plots (subplots) within each whole plot.’. I will read the data in r1 then convert to a suitable data.frame sp.
r1 <- read.table(textConnection('
1 1 1 56 1 1 2 41
1 2 1 50 1 2 2 36
1 3 1 39 1 3 2 35
2 1 1 30 2 1 2 25
2 2 1 36 2 2 2 28
2 3 1 33 2 3 2 30
3 1 1 32 3 1 2 24
3 2 1 31 3 2 2 27
3 3 1 15 3 3 2 19
4 1 1 30 4 1 2 25
4 2 1 35 4 2 2 30
4 3 1 17 4 3 2 18′),

col.names=c(‘Block1′,’A1′,’B1′,’Y1′,’Block2′,’A2′,’B2′,’Y2’))
sp <- with(r1,data.frame(
        Block=factor(c(Block1,Block2)),
        A=factor(c(A1,A2)),
        B=factor(c(B1,B2)),
        Y=c(Y1,Y2)))

Analysis

I won’t repeat the preliminary part (number of levels, number of observations etc.). It is not the R philosophy to have that within the mixed model. Hence it remains to calculate variances, determe the significance of fixed effects and a mean with standard deviation for the first level of factor a.

lme4

The model summary gives same variances for the random effects, same residual log likelihood (‘-2 Res Log Likelihood’ in proc mixed is ‘REMLdev’ in lme4), different values for AIC, BIC. lme4 does not by default give tests for fixed effects. 
l1 <- lmer(Y ~ A + B + A*B + (1 |Block) + (   1| A : Block) ,data=sp)
summary(l1)
Linear mixed model fit by REML 
Formula: Y ~ A + B + A * B + (1 | Block) + (1 | A:Block) 
   Data: sp 
   AIC   BIC logLik deviance REMLdev
 137.8 148.4 -59.88    141.7   119.8
Random effects:
 Groups   Name        Variance Std.Dev.
 A:Block  (Intercept) 15.3819  3.9220  
 Block    (Intercept) 62.3958  7.8991  
 Residual              9.3611  3.0596  
Number of obs: 24, groups: A:Block, 12; Block, 4

Fixed effects:
            Estimate Std. Error t value
(Intercept)   37.000      4.667   7.928
A2             1.000      3.517   0.284
A3           -11.000      3.517  -3.127
B2            -8.250      2.163  -3.813
A2:B2          0.500      3.060   0.163
A3:B2          7.750      3.060   2.533

Correlation of Fixed Effects:
      (Intr) A2     A3     B2     A2:B2 
A2    -0.377                            
A3    -0.377  0.500                     
B2    -0.232  0.308  0.308              
A2:B2  0.164 -0.435 -0.217 -0.707       
A3:B2  0.164 -0.217 -0.435 -0.707  0.500

Test for fixed effects

The example gives tests for all fixed effects. I am following the school where testing a main effect when it is present in an interaction has no meaning, so I will only test the A*B interaction. There are two ways to go about this; compare hierarchical models via anova and simulation. Proc mixed has p-value 0.0566. Anova gave 0.0204, simulation 0.068.
l2 <- lmer(Y ~ A + B + (1 |Block) + (   1| A : Block) ,data=sp)
anova(l2,l1)
Data: sp
Models:
l2: Y ~ A + B + (1 | Block) + (1 | A:Block)
l1: Y ~ A + B + A * B + (1 | Block) + (1 | A:Block)
   Df    AIC    BIC  logLik  Chisq Chi Df Pr(>Chisq)  
l2  7 163.47 171.71 -74.734                           
l1  9 159.69 170.29 -70.844 7.7796      2    0.02045 *
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

pboot <- function(m0,m1) {
  s <- simulate(m0)
  L0 <- logLik(refit(m0,s))
  L1 <- logLik(refit(m1,s))
  2*(L1-L0)
}
obsdev <- 2*( as.numeric(logLik(l1))-as.numeric(logLik(l2)))
set.seed(1001)
reps <- replicate(1000,pboot(l2,l1))
mean(reps>obsdev)
[1] 0.068

mean for a level 1

The example provides the mean with three standard errors, depending on the inference space. The broad inference space is of interest, mean 32.875, sd=4.54. In lme4 we will run this as another simulation. The sd is a bit smaller.
mcs <- mcmcsamp(l1,10000)
mcsdf <- as.data.frame(mcs)
c(mean=mean(mcsdf[,1]+.5*mcsdf[,’B2′]),sd=sd(mcsdf[,1]+.5*mcsdf[,’B2′]))
     mean        sd 
32.913643  3.459708 

MCMCglm

MCMCglm has a different perspective, for one, it is Bayesian However this does not preclude us from looking at the data. It seems the variances are completely different, much larger. More on this later. Fixed effects look quite like the ones from lme4.
library(MCMCglmm)
m1 <- MCMCglmm(Y ~ A + B + A*B, random= ~Block + A : Block ,
    data=sp,family=’gaussian’,nitt=500000,thin=20,
    burnin=50000,verbose=FALSE)
summary(m1)

 Iterations = 50001:499981
 Thinning interval  = 20
 Sample size  = 22500 

 DIC: 145.191 

 G-structure:  ~Block

      post.mean  l-95% CI u-95% CI eff.samp
Block     149.8 1.985e-17    459.8    21784

               ~A:Block

        post.mean  l-95% CI u-95% CI eff.samp
A:Block     25.99 5.336e-17      120    374.1

 R-structure:  ~units

      post.mean l-95% CI u-95% CI eff.samp
units     18.81    3.764    39.78    606.9

 Location effects: Y ~ A + B + A * B 

            post.mean l-95% CI u-95% CI eff.samp   pMCMC   
(Intercept)   36.9516  23.9439  49.5868    22500 0.00213 **
A2             0.9780  -8.4952  10.5917    24190 0.80222   
A3           -11.0647 -20.8373  -1.5902    22500 0.03076 * 
B2            -8.2458 -14.2918  -2.0896    22991 0.01413 * 
A2:B2          0.5208  -7.8395   9.7543    22500 0.89973   
A3:B2          7.7596  -1.0876  16.2564    22500 0.07511 . 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

Test for fixed effects

Hypothesis tests do not really exist in this context. However, one can have a look if 0,0 for the terms A2:B2 and A3:B2 at the same time is probable. Both these terms are positive, but it seems that 3% of the samples have both terms negative.
table(sign(m1$Sol[,’A2:B2′]),sign(m1$Sol[,’A3:B2′]))/nrow(m1$Sol)
             -1          1
  -1 0.03195556 0.41791111
  1  0.00560000 0.54453333

mean for a level 1

This can be pulled from the fixed effects samples. The standard deviation is a bit larger than from proc mixed and lme4.
c(mean=mean(m1$Sol[,1]+.5*m1$Sol[,’B2′]),
        sd=sd(m1$Sol[,1]+.5*m1$Sol[,’B2′]))
     mean        sd 
32.828740  6.655951 

MCMC variances discussion

MCMCglm had strange results for variations. For further examination I drew some quantiles. 
The first concerns blocks, the posterior mean of 150 is way of from 62 which both lme4 and proc mixed give. Still, the median seems reasonable. 
The second is A:block, 15 from proc mixed and lme4. Many, many MCMC samples have very low values, showing to a different solution. But there are also 10% samples over 85. 
Third is units, proc mixed and lme4 have 9.4, most of the samples are much larger.
lapply(1:3,function(i) quantile(m1$VCV[,i],seq(.1,.9,.2)))
[[1]]
         10%          30%          50%          70%          90% 
6.036660e-08 2.804703e+01 5.683922e+01 1.050030e+02 2.735606e+02 

[[2]]
         10%          30%          50%          70%          90% 
6.975880e-13 4.202219e-06 2.628300e+00 2.210180e+01 8.511472e+01 

[[3]]
      10%       30%       50%       70%       90% 
 7.104689 11.608162 16.596443 22.304393 32.750846 

It almost seems as MCMCglm finds samples where A:blocks is absent, while units get a much higher variation. Obviously, this alternative model cn be run in lme4, and compared with the first model. The A:Blocks term is not significant, which makes this explanation less plausible.
l3 <- lmer(Y ~ A + B + A*B + (1 |Block)  ,data=sp)
summary(l3)
 Linear mixed model fit by REML 
Formula: Y ~ A + B + A * B + (1 | Block) 
   Data: sp 
   AIC BIC logLik deviance REMLdev
 139.6 149 -61.81    146.8   123.6
Random effects:
 Groups   Name        Variance Std.Dev.
 Block    (Intercept) 65.472   8.0915  
 Residual             21.667   4.6547  
Number of obs: 24, groups: Block, 4

Fixed effects:
            Estimate Std. Error t value
(Intercept)   37.000      4.667   7.928
A2             1.000      3.291   0.304
A3           -11.000      3.291  -3.342
B2            -8.250      3.291  -2.507
A2:B2          0.500      4.655   0.107
A3:B2          7.750      4.655   1.665

Correlation of Fixed Effects:
      (Intr) A2     A3     B2     A2:B2 
A2    -0.353                            
A3    -0.353  0.500                     
B2    -0.353  0.500  0.500              
A2:B2  0.249 -0.707 -0.354 -0.707       
A3:B2  0.249 -0.354 -0.707 -0.707  0.500
anova(l1,l3)

Data: sp
Models:
l3: Y ~ A + B + A * B + (1 | Block)
l1: Y ~ A + B + A * B + (1 | Block) + (1 | A:Block)
   Df    AIC    BIC  logLik  Chisq Chi Df Pr(>Chisq)  
l3  8 162.83 172.25 -73.414                           
l1  9 159.69 170.29 -70.844 5.1407      1    0.02337 *
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1
obsdev13 <- 2*( as.numeric(logLik(l1))-as.numeric(logLik(l3)))
reps13 <- replicate(1000,pboot(l3,l1))
mean(reps13>obsdev13)
[1] 0.027

To leave a comment for the author, please follow the link and comment on their blog: Wiekvoet.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)