Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
An earlier article discussed sparse matrix conversion but stopped short of showing how to create custom as<>()
and wrap()
methods or functions. This post starts to close this gap.
We will again look at sparse matrices from the Matrix package for R, as well as the SpMat
class from Armadillo.
At least for now we will limit outselves to the case of double
element types. These uses the sp_mat
typedef which will be our basic type for sparse matrices at the C++ level.
At the time of writing, this code had just been added to the SVN repo RcppArmadillo
as an extension header file spmat.h
. Further integration is planned, but no concrete steps are planned just yet.
First, we look at the as
method.
// [[Rcpp::depends(RcppArmadillo)]] #include <RcppArmadillo.h> namespace Rcpp { // converts an SEXP object from R which was created as a sparse // matrix via the Matrix package) into an Armadillo sp_mat matrix // // TODO: template'ize to allow for types other than double, though // realistically this is all we need template <> arma::sp_mat as(SEXP sx) { S4 mat(sx); IntegerVector dims = mat.slot("Dim"); arma::urowvec i = Rcpp::as<arma::urowvec>(mat.slot("i")); arma::urowvec p = Rcpp::as<arma::urowvec>(mat.slot("p")); arma::vec x = Rcpp::as<arma::vec>(mat.slot("x")); int nrow = dims[0], ncol = dims[1]; arma::sp_mat res(nrow, ncol); // create space for values, and copy arma::access::rw(res.values) = arma::memory::acquire_chunked<double>(x.size() + 1); arma::arrayops::copy(arma::access::rwp(res.values), x.begin(), x.size() + 1); // create space for row_indices, and copy arma::access::rw(res.row_indices) = arma::memory::acquire_chunked<arma::uword>(i.size() + 1); arma::arrayops::copy(arma::access::rwp(res.row_indices), i.begin(), i.size() + 1); // create space for col_ptrs, and copy arma::access::rw(res.col_ptrs) = arma::memory::acquire<arma::uword>(p.size() + 2); arma::arrayops::copy(arma::access::rwp(res.col_ptrs), p.begin(), p.size() + 1); // important: set the sentinel as well arma::access::rwp(res.col_ptrs)[p.size()+1] = std::numeric_limits<arma::uword>::max(); // set the number of non-zero elements arma::access::rw(res.n_nonzero) = x.size(); return res; } }
Next, we look at the corresponding wrap()
method.
namespace Rcpp { // convert an Armadillo sp_mat into a corresponding R sparse matrix // we copy to STL vectors as the Matrix package expects vectors whereas the // default wrap in Armadillo returns matrix with one row (or col) SEXP wrap(arma::sp_mat sm) { IntegerVector dim(2); dim[0] = sm.n_rows; dim[1] = sm.n_cols; arma::vec x(sm.n_nonzero); // create space for values, and copy arma::arrayops::copy(x.begin(), sm.values, sm.n_nonzero); std::vector<double> vx = arma::conv_to< std::vector< double > >::from(x); arma::urowvec i(sm.n_nonzero); // create space for row_indices, and copy & cast arma::arrayops::copy(i.begin(), sm.row_indices, sm.n_nonzero); std::vector<int> vi = arma::conv_to< std::vector< int > >::from(i); arma::urowvec p(sm.n_cols+1); // create space for col_ptrs, and copy arma::arrayops::copy(p.begin(), sm.col_ptrs, sm.n_cols+1); // do not copy sentinel for returning R std::vector<int> vp = arma::conv_to< std::vector< int > >::from(p); S4 s("dgCMatrix"); s.slot("i") = vi; s.slot("p") = vp; s.slot("x") = vx; s.slot("Dim") = dim; return s; } }
We can now illustrate this with a simple example.
// [[Rcpp::export]] arma::sp_mat doubleSparseMatrix(arma::sp_mat m) { Rcpp::Rcout << m << std::endl; // use the i/o from Armadillo arma::sp_mat n = 2*m; return n; }
First, we create a sparse matrix. We then the function we just showed to to a minimal (and boring) transformation: we double the values of the matrix. The key really in the seamless passage of matrix A
from R down to the C++ code where it is accessed as m
, and the return of the new matrix n
which becomes B
at the R level.
suppressMessages(library(Matrix)) i <- c(1,3:8) # row indices j <- c(2,9,6:10) # col indices x <- 7 * (1:7) # values A <- sparseMatrix(i, j, x = x) A 8 x 10 sparse Matrix of class "dgCMatrix" [1,] . 7 . . . . . . . . [2,] . . . . . . . . . . [3,] . . . . . . . . 14 . [4,] . . . . . 21 . . . . [5,] . . . . . . 28 . . . [6,] . . . . . . . 35 . . [7,] . . . . . . . . 42 . [8,] . . . . . . . . . 49 B <- doubleSparseMatrix(A) # this will print A from C++ [matrix size: 8x10; n_nonzero: 7; density: 8.75%] (0, 1) 7.0000 (3, 5) 21.0000 (4, 6) 28.0000 (5, 7) 35.0000 (2, 8) 14.0000 (6, 8) 42.0000 (7, 9) 49.0000 B 8 x 10 sparse Matrix of class "dgCMatrix" [1,] . 14 . . . . . . . . [2,] . . . . . . . . . . [3,] . . . . . . . . 28 . [4,] . . . . . 42 . . . . [5,] . . . . . . 56 . . . [6,] . . . . . . . 70 . . [7,] . . . . . . . . 84 . [8,] . . . . . . . . . 98 identical(2*A, B) [1] TRUE
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.