Data sonification with R: the sound of Twitter data
[This article was first published on SoMe Lab » r-project, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
What does a tweet sound like? Not the kind that flies around in the air, but the kind that zips to and from our mobile devices. I’m intensely interested in finding ways to make sense of data. Sonification of data – representing data with sound – offers one way to do that. This post steps through R code to take the text of tweets and turn them into short chirping sounds. It also uses different tones for different users so that each user has a “voice”. In other words, this post shows how to use R to make Twitter data sing.
?Download download.R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | # Author: Jeff Hemsley jhemsley at uw dot edu # Twitter: @JeffHemsley # Created: Sometime in 2013 # # the location of the files I used are at: # http://somelab.net/wp-content/uploads/2013/05/test_tweet_like_data.txt # Grab these files or make your own and fix the path info below # # load the tuneR package library(tuneR) dir.path <- "c:/r/rt_nets/" dir.path.dat <- "c:/r/rt_nets/dat/" #dir.path.dat <- "c:/r/sound/" tweet.data.file.name <- "earthRTs.txt" #tweet.data.file.name <- "test_tweet_like_data.txt" tweet.data.file <- paste(dir.path.dat, tweet.data.file.name, sep="") # tweet data is stored in a file, often a big one with a tab as the separater tweet.data <- data.frame(read.delim(file=tweet.data.file, sep='\t', stringsAsFactors=F, row.names=NULL)) # ok, just so we can see what we got... colnames(tweet.data) dim(tweet.data) tweet.data[1,] # now, we want have certain characters given some sounds, everything else we # treat as a pause so as to sort of mimic language and bird chirps. So # here is a list of the characters we will create sound for. Spaces give us # us something like different words. chars.to.sonify <- c("#", "@", "-", ",", ".", "'", letters, as.character(0:9)) chars.to.sonify.length <- length(chars.to.sonify) # sampling rate. this is how many data points (I think) per second sampeling.rate <- 6000 # how rich the sound is? bits <- 8 long.pause <- .5 # in seconds short.pause <- .1 # in seconds character.sound.length <- 0.01 # we are going to setup a range of tones for each user # to do that we need to find the total range, how many users, and a min and max for each user # and then stuff it in a dataframe so we can get those ranges depending on who is "talking" # note, Hz low values are deep song, and high values are high pitched min.Hz <- 600 max.Hz <- 8000 Hz.range <- max.Hz - min.Hz # get the users from the original dataframe users.vector <- sort(unique(tweet.data$user.screen_name)) users.vector.length <- length(users.vector) num.tone.start.buckets <- floor(Hz.range/users.vector.length) # ok, now make the dataframe user.voice.df <- data.frame(screen.name=users.vector, min.tone=rep(0, users.vector.length), max.tone=rep(0, users.vector.length)) user.voice.df$min.tone <- seq(from=min.Hz, by=num.tone.start.buckets, length=users.vector.length) user.voice.df$max.tone <- seq(to=max.Hz, by=num.tone.start.buckets, length=users.vector.length) user.voice.df[1,] # whats the first row look like? user.voice.df[users.vector.length,] # whats the last row look like? #ok. Now, we don't want to do all of the tweets, just a sample, for experimenting # do like 3 to 10. num.tweets.to.sonify <- 10 num.obs <- dim(tweet.data)[1] if (num.obs < num.tweets.to.sonify) { num.tweets.to.sonify <- num.obs } tweet.rows.to.sing <- sample(x=1:num.obs, size=num.tweets.to.sonify) # here is the sonify loop: for each user sing thier tweet for (i in 1:num.tweets.to.sonify) { if (i == 1) { # wait! if this is the first iteration, lets make a wave object: a "coversation" of tweets w.conversation <- silence(duration = long.pause, xunit = c("samples", "time")[2], bit=bits, samp.rate=sampeling.rate) } # i-th sample df.tweet.row <- tweet.rows.to.sing[i] # get the user and set their range the.user <- tweet.data$user.screen_name[df.tweet.row] the.user.index <- which(user.voice.df$screen.name == the.user) user.min.Hz <- user.voice.df$min.tone[the.user.index] user.max.Hz <- user.voice.df$max.tone[the.user.index] user.Hz.range <- user.max.Hz - user.min.Hz # get the tweet text the.tweet <- tweet.data$text[df.tweet.row] the.tweet.length <- nchar(the.tweet) # break into a vector of characters # lowercase the letters. stuff it all in a vector tweet.text.vec <- unlist(strsplit(tolower(the.tweet), "")) # For each character in the tweet, find it's index in the chars.to.sonify # (see above for our 'alphabet' of chars we are sounding out) tmp.index <- match(tweet.text.vec, chars.to.sonify) # each 'talker' starts with a pause of silence wobj <- silence(duration = long.pause, xunit = c("samples", "time")[2], bit=bits, samp.rate=sampeling.rate) # ok. for each character in the tweet, make a little wave for it. for (j in 1:the.tweet.length) { # j <- 1 + j if (is.na(tmp.index[j])) { w <- silence(duration = short.pause, xunit = c("samples", "time")[2], bit=bits, samp.rate=sampeling.rate) } else { tweet.char.freq <- (tmp.index[j] * (user.Hz.range/chars.to.sonify.length)) + user.min.Hz w <- sine(tweet.char.freq, duration=character.sound.length, xunit = c("samples", "time")[2], bit=bits, samp.rate=sampeling.rate) } # add each part of the wave to the wave object wobj <- bind(wobj, w) } # add each talker's tweet to the conversasion w.conversation <- bind(w.conversation, wobj) } play(w.conversation) # write it all to a wav file. writeWave(w.conversation, "c:/r/sound/tweet_data_sonification.wav") |
To leave a comment for the author, please follow the link and comment on their blog: SoMe Lab » r-project.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.