Site icon R-bloggers

Couch, apis and all that

[This article was first published on Recology - R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

It is getting easier to get data directly into R from the web. Often R packages that retrieve data from the web return useful R data structures like a data.frame or plot. This is a good thing of course to make things user friendly.

However, what if you want to drill down into the data that’s returned from a query to a database in R? What if you want to get that nice data.frame in R, but you think you may want to look at the raw data later? The raw data from web queries are often JSON or XML data. This type of data, especially JSON, can be easily stored in schemaless so-called NoSQL databases, and queried later.

So here’s the use case, or workflow:

I’ve started an R package to interact with the NoSQL database CouchDB. This is a schemaless database that speaks JSON, so you can store JSON and get back JSON (no worries about XML, we can just wrap it in JSON). What’s especially cool is you can interact with CouchDB via a RESTful API. CouchDB doesn’t have full text search built in (though you can build map-reduce Views, basically preset queries on the database), so I added functions (and docs to help) to interact with the CouchDB River plugin for Elasticsearch, which provides powerful full text search via an API interface. But nevermind the tech details – all this just means you can search on the full text of your stored data.

Is this for the casual R user? Probably not. But, I imagine there are R users out there that want some more flexibility when it comes to interacting with web data in R. It is nice and tidy to get back an R data.frame from a web call, but having the raw data at your fingertips could be super powerful.

I’ll describe using an R package to interat with a web database with sofa baked in, and discuss a bit about the functions within sofa.

I would be remiss if I did not point out that there was another R package to interact with CouchDB before sofa: R4couchdb.


First start CouchDB in your terminal

You can do this from anywhere in your directory. See here for instructions on how to install CouchDB.

bash couchdb

Then start elasticsearch in your terminal

See here for instructions on how to install Elasticsearch and the River CouchDB plugin.

bash cd /usr/local/elasticsearch bin/elasticsearch -f


Install sofa

# Uncomment these lines if you don't have these packages installed
# install.packages('devtools') library(devtools) install_github('sofa',
# 'ropensci') install_github('alm', 'ropensci', ref='couch')
library(sofa)
library(alm)

Simultaneously write data to CouchDB along with API calls using the alm package to get altmetrics data on PLoS papers. Ping to make sure CouchDB is on

sofa_ping()

  couchdb   version 
"Welcome"   "1.2.1" 

Create a new database

sofa_createdb(dbname = "alm_db")

  ok 
TRUE 

Write couchdb database name to options

options(couch_db_name = "alm_db")

List the databases

sofa_listdbs()

 [1] "_replicator"                "_users"                    
 [3] "alm_couchdb"                "alm_db"                    
 [5] "dudedb"                     "example"                   
 [7] "poop"                       "rplos_db"                  
 [9] "shit"                       "shitty"                    
[11] "shitty2"                    "test_suite_db"             
[13] "test_suite_db/with_slashes" "test_suite_reports"        
[15] "testr2couch"                "twitter_db"                

Search for altmetrics normally, w/o writing to a database

head(alm(doi = "10.1371/journal.pone.0029797"))

          .id pdf html shares groups comments likes citations total
1   bloglines  NA   NA     NA     NA       NA    NA         0     0
2   citeulike  NA   NA      1     NA       NA    NA        NA     1
3    connotea  NA   NA     NA     NA       NA    NA         0     0
4    crossref  NA   NA     NA     NA       NA    NA         4     4
5      nature  NA   NA     NA     NA       NA    NA         4     4
6 postgenomic  NA   NA     NA     NA       NA    NA         0     0

Search for altmetrics normally, while writing to a database

head(alm(doi = "10.1371/journal.pone.0029797", write2couch = TRUE))

          .id pdf html shares groups comments likes citations total
1   bloglines  NA   NA     NA     NA       NA    NA         0     0
2   citeulike  NA   NA      1     NA       NA    NA        NA     1
3    connotea  NA   NA     NA     NA       NA    NA         0     0
4    crossref  NA   NA     NA     NA       NA    NA         4     4
5      nature  NA   NA     NA     NA       NA    NA         4     4
6 postgenomic  NA   NA     NA     NA       NA    NA         0     0

Make lots of calls, and write them simultaneously

# install_github('rplos', 'ropensci')
library(rplos)
dois <- searchplos(terms = "evolution", fields = "id", limit = 100)
out <- alm(doi = as.character(dois[, 1]), write2couch = TRUE)
lapply(out[1:2], head)

$`01`
          .id pdf html shares groups comments likes citations total
1   bloglines  NA   NA     NA     NA       NA    NA         0     0
2   citeulike  NA   NA      0     NA       NA    NA        NA     0
3    connotea  NA   NA     NA     NA       NA    NA         0     0
4    crossref  NA   NA     NA     NA       NA    NA         0     0
5      nature  NA   NA     NA     NA       NA    NA         0     0
6 postgenomic  NA   NA     NA     NA       NA    NA         0     0

$`02`
          .id pdf html shares groups comments likes citations total
1   bloglines  NA   NA     NA     NA       NA    NA         0     0
2   citeulike  NA   NA      1     NA       NA    NA        NA     1
3    connotea  NA   NA     NA     NA       NA    NA         0     0
4    crossref  NA   NA     NA     NA       NA    NA         2     2
5      nature  NA   NA     NA     NA       NA    NA         0     0
6 postgenomic  NA   NA     NA     NA       NA    NA         0     0

Writing data to CouchDB does take a bit longer

system.time(alm(doi = as.character(dois[, 1])[1:60], write2couch = FALSE))

   user  system elapsed 
  2.646   0.020   4.464 

system.time(alm(doi = as.character(dois[, 1])[1:60], write2couch = TRUE))

   user  system elapsed 
  4.692   0.086   7.022 

Search using elasticsearch

tell elasticsearch to start indexing your database

elastic_start(dbname = "alm_db")

$ok
[1] TRUE

Search your database

out <- elastic_search(dbname = "alm_db", q = "twitter", parse_ = TRUE)
out$hits$total

[1] 549

Using views

Write a view – here letting key be the default of null

sofa_view_put(dbname = "alm_db", design_name = "myview", value = "doc.baseurl")

$ok
[1] TRUE

$id
[1] "_design/myview"

$rev
[1] "1-e7c17cff1b96e4595c3781da53e16ad8"

Get info on your new view

sofa_view_get(dbname = "alm_db", design_name = "myview")

$`_id`
[1] "_design/myview"

$`_rev`
[1] "1-e7c17cff1b96e4595c3781da53e16ad8"

$views
$views$foo
                                    map 
"function(doc){emit(null,doc.baseurl)}" 

Get data using a view

out <- sofa_view_search(dbname = "alm_db", design_name = "myview")
length(out$rows)  # 160 results

[1] 161

sapply(out$rows, function(x) x$value)[1:5]  # the values, just the API call URLs

[1] "http://alm.plos.org/api/v3/articles"
[2] "http://alm.plos.org/api/v3/articles"
[3] "http://alm.plos.org/api/v3/articles"
[4] "http://alm.plos.org/api/v3/articles"
[5] "http://alm.plos.org/api/v3/articles"

Delete the view

sofa_view_del(dbname = "alm_db", design_name = "myview")

[1] ""

What happens now?

Well, if no one uses this, then probably nothing. Though, if people think this could be useful, then…

To leave a comment for the author, please follow the link and comment on their blog: Recology - R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.