[This article was first published on Xi'an's Og » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
#data generation N=100 x=rnorm(N) #HM steps T=10^5 theta=rep(0,T) curlike=dnorm(x,log=TRUE) for (t in 2:T){ prop=theta[t-1]+.1*rnorm(1) proplike=dnorm(x,mean=prop,log=TRUE) u=runif(1) bound=log(u)-dnorm(prop,sd=10,log=TRUE)+ dnorm(theta[t-1],sd=10,log=TRUE) if (median(proplike)-median(curlike)>bound/N){ theta[t]=prop;curlike=proplike } else { theta[t]=theta[t-1]} }
Filed under: R, Statistics Tagged: arXiv, mean vs. median, Metropolis-Hastings, R
To leave a comment for the author, please follow the link and comment on their blog: Xi'an's Og » R.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.