[This article was first published on Xi'an's Og » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
#data generation
N=100
x=rnorm(N)
#HM steps
T=10^5
theta=rep(0,T)
curlike=dnorm(x,log=TRUE)
for (t in 2:T){
prop=theta[t-1]+.1*rnorm(1)
proplike=dnorm(x,mean=prop,log=TRUE)
u=runif(1)
bound=log(u)-dnorm(prop,sd=10,log=TRUE)+
dnorm(theta[t-1],sd=10,log=TRUE)
if (median(proplike)-median(curlike)>bound/N){
theta[t]=prop;curlike=proplike
} else { theta[t]=theta[t-1]}
}
Filed under: R, Statistics Tagged: arXiv, mean vs. median, Metropolis-Hastings, R
To leave a comment for the author, please follow the link and comment on their blog: Xi'an's Og » R.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
