Resampling data in Hadoop with RHadoop

[This article was first published on Revolutions, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

On Revolution Analytics partner Cloudera's blog, Uri Laserson has posted an excellent guide to resampling from a large data set in Hadoop. Resampling is an important step in fitting ensemble models (including random forests and other bagging techniques), and Uri provides a step-by-step guide to implementing resampling methods using RHadoop. He provides the complete map-reduce code in the R language, as well as a useful script for installing RHadoop on a Cloudera instance.  

By the way, if you're new to RHadoop, here's RHadoop creator and project leader Antonio Piccolboni introducting RHadoop at last year's Strata CA conference.

  

Cloudera blog: How-to: Resample from a Large Data Set in Parallel (with R on Hadoop)

To leave a comment for the author, please follow the link and comment on their blog: Revolutions.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)