Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Note to R users: Users of other languages enjoy spending lots of time discussing the minutiae of the language they use, something R users don’t appear to do; perhaps you spend your minutiae time on statistics which I don’t yet know well enough to spot when it occurs). There follows a minutiae post that may appear to be navel-gazing to you (interesting problem at the end though).
In various posts written about learning R I have said “I am trying to write R like a native”, which begs the question what does R written by a native look like? Assuming for a moment that ‘native R’ exists (I give some reasons why it might not below) how…
To help recognise native R it helps to start out by asking what it is not. Let’s start with an everyday analogy; if I listen to a French/German/American person speaking English I can usually tell what country they are from, they have patterns of usage that we in merry England very rarely, if ever, use; the same is true for programming languages. Back in the day when I spent several hours a day programming in various languages I could often tell when somebody showing me some Pascal code had previously spent many years writing Fortran or that although they were now using Fortran they had previously used Algol 60 for many years.
If expert developers can read R source and with high accuracy predict the language that its author previously spent many years using, then the source is not native R.
Having ruled out any code that is obviously (to a suitably knowledgeable person) not native R, is everything that is left native R? No, native language users share common characteristics; native speakers recognize these characteristics and feel at home. I’m not saying these characteristics are good, bad or indifferent any more than my southern English accent is better/worse than northern English or American accents; it is just the way people around here speak.
Having specified what I think is native R (I would apply the same rules to any language) it is time to ask whether it actually exists.
I’m sure there are people out there whose first language was R and who have spent a lot more time using R over, say, five years rather than any other language. Such people are unlikely to have picked up any noticeable coding accents from other languages and so can be treated as native.
Now we come to the common characteristics requirement, this is where I think an existence problem may exist.
How does one learn to use a language fluently? Taking non-R languages I am familiar with the essential ingredients seem to be:
- spending lots of time using the language, say a couple of hours a day for a few years
- talking to other, heavy, users of the language on a daily basis (often writing snippets of code when discussing problems they are working on),
- reading books and articles covering language usage.
I am not saying that these activities create good programmers, just that they result in language usage characteristics that are common across a large percentage of the population. Talking and reading provides the opportunity to learn specific techniques and writing lots of code provides the opportunity to make use these techniques second nature.
Are these activities possible for R?
- I would guess that most R programs are short, say under 150 lines. This is at least an order of magnitude shorter (if not two or three orders of magnitude) than program written in Java/C++/C/Fortran/etc. I know there are R users out there who have been spending a couple of hours a day using R over several years, but are they thinking about R coding or think about the statistics and what the data analysis really means. I suspect they are spending most of this R-usage thinking time on the statistics and data analysis,
- I can easily imagine groups of people using R and individuals having the opportunity to interact with other R users (do they talk about R and write snippets of code to describe their problem? I don’t work in an R work environment, so I don’t know the answer),
- Where are the R books and articles on language usage? They don’t exist, not in the sense of Sutter’s “Effective C++: 55 Specific Ways to Improve Your Programs and Designs” (there must be a several dozen of this kind of book for C++) Bloch’s “Java Puzzlers: Traps, Pitfalls, and Corner Cases” (probably only a handful for Java) and Koenig’s “C: Traps and Pitfalls” (again a couple of dozen for C). In places Crawley’s “The R Book” has the feel of this kind of book, but Matloff’s “The Art of R Programming” is really an introduction to R for people who already know another language (no discussion of art of R as such). R users write about statistics and data analysis, with the language being a useful tool.
I suspect that many people are actually writing R for short amounts of time to solve data analysis problems they spend a lot of time thinking about; they don’t discuss R the language much (so little opportunity to learn about the techniques that other people use) and they don’t write much code (so little opportunity to try out many new techniques).
Yes, there may be a few people who do spend a couple of hours a day thinking about R the language and also get to write lots of code, these people are more like high priests than your average user.
For the last two years I have been following a no for-loops policy in an attempt to make myself write R how the natives write it. I am beginning to suspect that this view of native R is really just me imposing beliefs from usage of other language that support whole vector/array operations, e.g., APL.
I encountered the following coding problem yesterday. Do you think the non-loop version should be how it is done in R or is the loop version more ‘natural’?
Given a vector of ordered items the problem is to count the length of each subsequence of identical items,
a,a,a,b,b,a,c,c,c,c,b,c,c |
output
a 3 b 2 a 1 c 4 b 1 c 2 |
Non-looping version (looping version is easy to figure out):
subseq_len=function(feature) { r_shift=c(feature[1], feature) l_shift=c(feature, ",,,") # pad with something that will not match # Where are the boundaries between subsequences? boundary=(l_shift != r_shift) sum_matches=cumsum(!boundary) # Difference of cumulative sum at boundaries, whose value will # be off by 1 and we need to handle 'virtual' start of list at 1. t=sum_matches[boundary] seq_len=1+c(t, 0)-c(1, t) # Remove spurious value return(cbind(feature[boundary[-1]], seq_len[-length(seq_len)])) } subseq_len(c("a", "a", "b", "b", "e", "c", "c", "c", "a", "c", "c")) |
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.