Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Consider the problem to sort all elements of the given vector in ascending order. We can simply use the function std::sort
from the C++ STL.
#include <Rcpp.h> using namespace Rcpp; // [[Rcpp::export]] NumericVector stl_sort(NumericVector x) { NumericVector y = clone(x); std::sort(y.begin(), y.end()); return y; } library(rbenchmark) set.seed(123) z <- rnorm(100000) x <- rnorm(100) # check that stl_sort is the same as sort stopifnot(all.equal(stl_sort(x), sort(x))) # benchmark stl_sort and sort benchmark(stl_sort(z), sort(z), order="relative")[,1:4] test replications elapsed relative 1 stl_sort(z) 100 0.632 1.000 2 sort(z) 100 1.164 1.842
Consider the problem of sorting the first n
elements of a given vector. The function std::partial_sort
from the C++ STL does just this.
// [[Rcpp::export]] NumericVector stl_partial_sort(NumericVector x, int n) { NumericVector y = clone(x); std::partial_sort(y.begin(), y.begin()+n, y.end()); return y; }
An alternate implementation of a partial sort algorithm is to use std::nth_element
to partition the given vector at the nth sorted element and then use std::sort
, both from the STL, to sort the vector from the beginning to the nth element.
For an equivalent implementation in R, we can use the sort
function by specifying a vector of 1:n
for the partial argument (i.e. partial=1:n
).
// [[Rcpp::export]] NumericVector nth_partial_sort(NumericVector x, int nth) { NumericVector y = clone(x); std::nth_element(y.begin(), y.begin()+nth, y.end()); std::sort(y.begin(), y.begin()+nth); return y; } n <- 25000 # check that stl_partial_sort is equal to nth_partial_sort stopifnot(all.equal(stl_partial_sort(x, 50)[1:50], nth_partial_sort(x, 50)[1:50])) # benchmark stl_partial_sort, nth_element_sort, and sort benchmark(stl_partial_sort(z, n), nth_partial_sort(z, n), sort(z, partial=1:n), order="relative")[,1:4] test replications elapsed relative 2 nth_partial_sort(z, n) 100 0.208 1.000 1 stl_partial_sort(z, n) 100 0.516 2.481 3 sort(z, partial = 1:n) 100 0.796 3.827
An interesting result to note is the gain in speed of nth_partial_sort
over stl_partial_sort
. In this case, for the given data, it is faster to use the combination ofstd::nth_element
and std::sort
rather than std::partial_sort
to sort the first n
elements of a vector.
// [[Rcpp::export]] NumericVector stl_nth_element(NumericVector x, int n) { NumericVector y = clone(x); std::nth_element(y.begin(), y.begin()+n, y.end()); return y; }
Finally, consider a problem where you only need a single element of a sorted vector. The function std::nth_element
from the C++ STL does just this. An example of this type of problem is computing the median of a given vector.
For an equivalent implementation in R, we can use the sort
function by specifying a scalar value for the argument partial (i.e. partial=n
).
# check that the nth sorted elements of the vectors are equal stopifnot(all.equal(stl_nth_element(x, 43)[43], sort(x, partial=43)[43])) # benchmark nth_element and sort benchmark(stl_nth_element(z, n), sort(z, partial=n), order="relative")[,1:4] test replications elapsed relative 1 stl_nth_element(z, n) 100 0.089 1.000 2 sort(z, partial = n) 100 0.238 2.674
While these are not huge speed improvements over the base R sort function, this post demonstrates how to easily access sorting functions in the C++ STL and is a good exercise to better understand the differences and performance of the sorting algorithms available in C++ and R.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.