Site icon R-bloggers

Seasonal Trend Decomposition in R

[This article was first published on Software for Exploratory Data Analysis and Statistical Modelling » R Environment, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

The Seasonal Trend Decomposition using Loess (STL) is an algorithm that was developed to help to divide up a time series into three components namely: the trend, seasonality and remainder. The methodology was presented by Robert Cleveland, William Cleveland, Jean McRae and Irma Terpenning in the Journal of Official Statistics in 1990. The STL is available within R via the stl function.

The use of the stl function can be demonstrated using one of the data sets available within the base R installation. The well used nottem data set (Average Monthly Temperatures at Nottingham, 1920-1939) is a good starting point. The data itself is presented here:

> nottem
      Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec
1920 40.6 40.8 44.4 46.7 54.1 58.5 57.7 56.4 54.3 50.5 42.9 39.8
1921 44.2 39.8 45.1 47.0 54.1 58.7 66.3 59.9 57.0 54.2 39.7 42.8
1922 37.5 38.7 39.5 42.1 55.7 57.8 56.8 54.3 54.3 47.1 41.8 41.7
1923 41.8 40.1 42.9 45.8 49.2 52.7 64.2 59.6 54.4 49.2 36.3 37.6
1924 39.3 37.5 38.3 45.5 53.2 57.7 60.8 58.2 56.4 49.8 44.4 43.6
1925 40.0 40.5 40.8 45.1 53.8 59.4 63.5 61.0 53.0 50.0 38.1 36.3
1926 39.2 43.4 43.4 48.9 50.6 56.8 62.5 62.0 57.5 46.7 41.6 39.8
1927 39.4 38.5 45.3 47.1 51.7 55.0 60.4 60.5 54.7 50.3 42.3 35.2
1928 40.8 41.1 42.8 47.3 50.9 56.4 62.2 60.5 55.4 50.2 43.0 37.3
1929 34.8 31.3 41.0 43.9 53.1 56.9 62.5 60.3 59.8 49.2 42.9 41.9
1930 41.6 37.1 41.2 46.9 51.2 60.4 60.1 61.6 57.0 50.9 43.0 38.8
1931 37.1 38.4 38.4 46.5 53.5 58.4 60.6 58.2 53.8 46.6 45.5 40.6
1932 42.4 38.4 40.3 44.6 50.9 57.0 62.1 63.5 56.3 47.3 43.6 41.8
1933 36.2 39.3 44.5 48.7 54.2 60.8 65.5 64.9 60.1 50.2 42.1 35.8
1934 39.4 38.2 40.4 46.9 53.4 59.6 66.5 60.4 59.2 51.2 42.8 45.8
1935 40.0 42.6 43.5 47.1 50.0 60.5 64.6 64.0 56.8 48.6 44.2 36.4
1936 37.3 35.0 44.0 43.9 52.7 58.6 60.0 61.1 58.1 49.6 41.6 41.3
1937 40.8 41.0 38.4 47.4 54.1 58.6 61.4 61.8 56.3 50.9 41.4 37.1
1938 42.1 41.2 47.3 46.6 52.4 59.0 59.6 60.4 57.0 50.7 47.8 39.2
1939 39.4 40.9 42.4 47.8 52.4 58.0 60.7 61.8 58.2 46.7 46.6 37.8

We can try and run stl by specifying the data frame only but R returns an error message:

> stl(nottem)
Error in stl(nottem) : argument "s.window" is missing, with no default

Looking at the help pages we see the following information for the s.window argument: either the character string “periodic” or the span (in lags) of the loess window for seasonal extraction, which should be odd. so if we work with the periodic option we now find that R runs happily:

> nottem.stl = stl(nottem, s.window="periodic")

Now that we have the STL decomposition there is a plot function provided for the object created from a call to stl.

> plot(nottem.stl)

The graph looks like this:

STL Decomposition of Nottingham Temperature Time Series

The four graphs are the original data, seasonal component, trend component and the remainder and this shows the periodic seasonal pattern extracted out from the original data and the trend that moves around between 47 and 51 degrees Fahrenheit. There is a bar at the right hand side of each graph to allow a relative comparison of the magnitudes of each component. For this data the change in trend is less than the variation doing to the monthly variation.

To leave a comment for the author, please follow the link and comment on their blog: Software for Exploratory Data Analysis and Statistical Modelling » R Environment.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.