Examples of Current Major Market Clusters
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
I want to follow up and provide a bit more details to the excellent “A Visual of Current Major Market Clusters” post by David Varadi.
Let’s first load historical for the 10 major asset classes:
- Gold ( GLD )
- US Dollar ( UUP )
- S&P500 ( SPY )
- Nasdaq100 ( QQQ )
- Small Cap ( IWM )
- Emerging Markets ( EEM )
- International Equity ( EFA )
- Real Estate ( IYR )
- Oil ( USO )
- Treasurys ( TLT )
###############################################################################
# Load Systematic Investor Toolbox (SIT)
# http://systematicinvestor.wordpress.com/systematic-investor-toolbox/
###############################################################################
setInternet2(TRUE)
con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))
source(con)
close(con)
#*****************************************************************
# Load historical data for ETFs
#******************************************************************
load.packages('quantmod')
tickers = spl('GLD,UUP,SPY,QQQ,IWM,EEM,EFA,IYR,USO,TLT')
data <- new.env()
getSymbols(tickers, src = 'yahoo', from = '1900-01-01', env = data, auto.assign = T)
for(i in ls(data)) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T)
bt.prep(data, align='remove.na')
Next let’s use the historical returns over the past year to compute correlations between all asset classes and group assets into 4 clusters:
#*****************************************************************
# Create Clusters
#******************************************************************
# compute returns
ret = data$prices / mlag(data$prices) - 1
ret = na.omit(ret)
# setup period and method to compute correlations
dates = '2012::2012'
method = 'pearson' # kendall, spearman
correlation = cor(ret[dates], method = method)
dissimilarity = 1 - (correlation)
distance = as.dist(dissimilarity)
# find 4 clusters
xy = cmdscale(distance)
fit = kmeans(xy, 4, iter.max=100, nstart=100)
#*****************************************************************
# Create Plot
#******************************************************************
load.packages('cluster')
clusplot(xy, fit$cluster, color=TRUE, shade=TRUE, labels=3, lines=0, plotchar=F,
main = paste('Major Market Clusters over', dates), sub='')
There are 4 clusters: TLT, GLD, UUP, and Equities / Oil / Real Estate. You can see assigned clusters by executing
fit$cluster
This works quite well, but we have a number of things to explore:
- how to select number of clusters
- what correlation measure to use i.e. pearson, kendall, spearman
- what look back to use i.e. 1 month / 6 months / 1 year
- what frequency of data to use i.e daily / weekly / monthly
In the next post I will provide some ideas how to select number of clusters.
To view the complete source code for this example, please have a look at the bt.cluster.visual.test() function in bt.test.r at github.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
