A first example of using Boost

[This article was first published on Rcpp Gallery, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Boost is, to quote the quote by Sutter and Alexandrescu which adornes the Boost website, …one of the most highly regarded and expertly designed C++ library projects in the world.

The impact of Boost on C++ cannot be overstated. Boost is, at its core, a collection of thoroughly designed and peer-reviewed libraries. Some of these have been included into the new C++11 standard (see our intro post on C++11) as for example lambda functions which we illustrated in another post on C++11.

Boost is mostly implemented using templates. That means headers files only, and compile-time – but not linking. Which is perfect for example posts like these.

Many, many Boost libraries are useful, and we could fill a series of posts. Here, as an introduction, we going to use two simple functions from the Boost.Math library to compute greatest common denominator and least common multiple.

I should note that I write this post on a machine with Boost headers in a standard system location. So stuff just works. If you have to install Boost from source, and into a non-standard location, you may need to add a -I flag, not unlike how added the C++11 flag in this post .

#include <Rcpp.h>
#include <boost/math/common_factor.hpp>  // one file, automatically found here

using namespace Rcpp;
 
// [[Rcpp::export]]
int computeGCD(int a, int b) {
    return boost::math::gcd(a, b);
}

// [[Rcpp::export]]
int computeLCM(int a, int b) {
    return boost::math::lcm(a, b);
}

We can test these:

a <- 6
b <- 15
cat( c(computeGCD(a,b), computeLCM(a,b)), "\n")


3 30 

a <- 96
b <- 484
cat( c(computeGCD(a,b), computeLCM(a,b)), "\n")


4 11616 

And as kindly suggested and submitted by Kohske Takahashi, we can also benchmark this against an R solution using the numbers package:

library(rbenchmark)
library(numbers)

a <- 962
b <- 4842

res <- benchmark(r1 = c(computeGCD(a,b), computeLCM(a,b)),
                 r2 = c(GCD(a,b), LCM(a,b)),
                 replications = 5000)
print(res[,1:4])


  test replications elapsed relative
1   r1         5000   0.054    1.000
2   r2         5000   0.421    7.796

This shows a nice performance gain.

To leave a comment for the author, please follow the link and comment on their blog: Rcpp Gallery.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)