[This article was first published on Obscure Analytics » Rstats, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
A few quick plots of West Baltimore neighborhoods, first Sandtown-Winchester:
and Harlem Park:
These aren’t very polished, I’ll put up better versions.
Here’s the code for those that want it:
## gis libraries library(spBayes) library(MBA) library(geoR) library(fields) library(sp) library(maptools) library(rgdal) library(classInt) library(lattice) library(xtable) library(spatstat) library(splancs) ## Other packages library(ggplot2) library(foreign) library(stringr) library(lubridate) library(plyr) library(xtable) library(scales) library(RColorBrewer) library(grid) library(ggmap) library(gridExtra) library(ggmcmc) ######################################################################## # City Boundary Shape File city_df <- read.dbf('Baltcity_20Line/baltcity_line.dbf') city_shp <- readOGR(dsn='Baltcity_20Line', layer='baltcity_line') origProj <- city_shp@proj4string ## Store original projection #city_shp = spTransform(city_shp,CRS("+proj=longlat +datum=WGS84")) city_pl_df <- fortify(city_shp, region='LABEL') cityLineCoords <- data.frame(city_shp@lines[[1]]@Lines[[1]]@coords) cityLinePoly <- Polygon(cityLineCoords) cityLinePolys <- Polygons(list(cityLinePoly), ID='cityline') cityLineSpPoly <- SpatialPolygons(list(cityLinePolys),proj4string=origProj) cityLineCoords <- cityLineCoords[,c(2,1)] ######################################################################## # Neighborhood Shape Files # Source: ## Neighborhood Shape Files read in v1 nbhds_df <- read.dbf('Neighborhood_202010/nhood_2010.dbf') nbhds_shp <- readOGR(dsn='Neighborhood_202010', layer='nhood_2010') origProj <- nbhds_shp@proj4string ## Store original projection #nbhds_shp = spTransform(nbhds_shp,CRS("+proj=longlat +datum=WGS84")) nbhds_pl_df <- fortify(nbhds_shp, region='LABEL') names(nbhds_shp@polygons) <- nbhds_shp@data$LABEL ## Neighborhood Shape Files read in v2 (from spatstat docs) #nbhds_shp <- readShapePoly('Neighborhood_202010/nhood_2010.shp') #nbhds_sp <- as(nbhds_shp, "SpatialPolygons") #nbhds_owin <- as(nbhds_sp, "owin") #centroids <- coordinates(nbhds_shp) hoodNames <- 'Mount Vernon' ggplot(data=nbhds_pl_df[nbhds_pl_df$id==hoodNames,], aes(x=long, y=lat, group=group)) + geom_path() + ggtitle(hoodNames) + coord_equal() ## plot actual city shape using empty nbhd boundaries city_plot <- bound_plot + geom_polygon(data=nbhds_pl_df, fill='white',color='white') ggsave('img/emptyCity.png') ## plot nbhd boundaries nbhds_plot <- bound_plot + geom_polygon(data=nbhds_pl_df,color='gray',fill='white') ggsave('img/nbhds.png') ######################################################################## # Parcel Shape Polygon Data # Source: parcel_df <- read.dbf('Parcel_Shp/parcel.dbf') parcel_shp <- readOGR(dsn='Parcel_Shp', layer='parcel') parcel_df <- data.frame(parcel_df, coordinates(parcel_shp)) parcel_mtrx <- as.matrix(coordinates(parcel_shp)) ######################################################################## # Vacant Buildings # Source: vacantBuildings_df <- read.csv('OpenDataSets/Vacant_Buildings.csv') vacantBuildings_df <- str2LatLong(vacantBuildings_df) inProj <- CRS("+proj=longlat +datum=WGS84") outProj <- origProj vacantBuildings_df <- convProj(vacantBuildings_df, inProj, outProj) vacantBuildings_df$type <- 'Vacant Building' vacBld_mtrx <- as.matrix(vacantBuildings_df[,c('long','lat')]) ######################################################################## # Vacant Lots # Source: vacantLots_df <- read.csv('OpenDataSets/Vacant_Lots.csv') vacantLots_df <- str2LatLong(vacantLots_df) inProj <- CRS("+proj=longlat +datum=WGS84") outProj <- origProj vacantLots_df <- convProj(vacantLots_df, inProj, outProj) vacantLots_df$type <- 'Vacant Lot' vacantLots_mtrx <- as.matrix(vacantLots_df[,c('long','lat')]) ######################################################################## ## Plot by neighborhood crimeData <- read.csv('OpenDataSets/BPD_Part_1_Victim_Based_Crime_Data.csv') crimeData_NoCoords <- crimeData[crimeData$Location.1 == '',] crimeData <- crimeData[crimeData$Location.1 != '',] ## Get and convert projection crimeData <- str2LatLong(crimeData) ## Incidents already in correct proj crimeData_ProjOrig <- crimeData[crimeData$lat>100,] crimeData <- crimeData[crimeData$lat<100,] inProj <- CRS("+proj=longlat +datum=WGS84") outProj <- origProj crimeData <- convProj(crimeData, inProj, outProj) crime_mtrx <- as.matrix(crimeData[,c('long','lat')]) ## Parse Dates crimeData$crimeDate2 <- parse_date_time( crimeData$crimeDate, orders='%m/%d/%Y' ) ## Get Burglary Incidents burg_df <- subset(crimeData, description=='BURGLARY') ## Hold Out 2012 Incidents burg_df_ho <- subset(burg_df, year(crimeDate2) == '2012') burg_df <- subset(burg_df, year(crimeDate2) != '2012') ggplot(data=burg_df, aes(x=long,y=lat)) + geom_point() + coord_equal() ## Get Street Robbery Incidents robbStr_df <- subset(crimeData, description=="ROBBERY - STREET") ## Hold Out 2012 Incidents robbStr_df_ho <- subset(robbStr_df, year(crimeDate2) == '2012') robbStr_df <- subset(robbStr_df, year(crimeDate2) != '2012') ggplot(data=robbStr_df, aes(x=long,y=lat)) + geom_point() + coord_equal() ## Homicide homic_df <- subset(crimeData, description=='HOMICIDE') ## Hold Out 2012 Incidents homic_df_ho <- subset(homic_df, year(crimeDate2) == '2012') homic_df <- subset(homic_df, year(crimeDate2) != '2012') ggplot(data=homic_df, aes(x=long,y=lat)) + geom_point() + coord_equal() ## Aggravated Assault aggrAslt_df <- subset(crimeData, description=='AGG. ASSAULT') ## Hold Out 2012 Incidents aggrAslt_df_ho <- subset(aggrAslt_df, year(crimeDate2) == '2012') aggrAslt_df <- subset(aggrAslt_df, year(crimeDate2) != '2012') ggplot(data=aggrAslt_df, aes(x=long,y=lat)) + geom_point() + coord_equal() ######################################################################## # Vacant Lots SandtownWinchester_df <- fortify(nbhds_shp@polygons[['Sandtown-Winchester']]) sw_mtr <- as.matrix(SandtownWinchester_df[,1:2]) sw_props <- data.frame(pip(parcel_mtrx, sw_mtr)) sw_vacB <- data.frame(pip(vacBld_mtrx, sw_mtr)) sw_vacL <- data.frame(pip(vacBld_mtrx, sw_mtr)) sw_crime <- data.frame(pip(crime_mtrx, sw_mtr)) sw_crime <- crimeData[rownames(sw_crime),] sw_crime_2012 <- subset(sw_crime, year(crimeDate2)==2012) colnames(sw_props) <- c('long','lat') colnames(sw_vacB) <- c('long','lat') colnames(sw_vacL) <- c('long','lat') # https://github.com/wch/ggplot2/wiki/New-theme-system new_theme_empty <- theme_bw() new_theme_empty$line <- element_blank() new_theme_empty$rect <- element_blank() new_theme_empty$strip.text <- element_blank() new_theme_empty$axis.text <- element_blank() new_theme_empty$plot.title <- element_blank() new_theme_empty$axis.title <- element_blank() new_theme_empty$legend.position <- 'bottom' new_theme_empty$plot.margin <- structure(c(0, 0, -1, -1), unit = "lines", valid.unit = 3L, class = "unit") crimeCols <- brewer.pal(12,'Paired') crimeTypes <- list('RAPE'=c(crimeCols[1],crimeCols[2]), 'ARSON'=c(crimeCols[1],crimeCols[2]), 'COMMON ASSAULT'=c(crimeCols[3],crimeCols[4]), 'AGG. ASSAULT'=c(crimeCols[3],crimeCols[4]), 'SHOOTING'=c(crimeCols[5],crimeCols[6]), 'HOMICIDE'=c(crimeCols[5],crimeCols[6]), 'ROBBERY - STREET'=c(crimeCols[7],crimeCols[8]), 'ROBBERY - CARJACKING'=c(crimeCols[7],crimeCols[8]), 'ROBBERY - RESIDENCE'=c(crimeCols[7],crimeCols[8]), 'ROBBERY - COMMERCIAL'=c(crimeCols[7],crimeCols[8]), 'BURGLARY'=c(crimeCols[9],crimeCols[10]), 'LARCENY'=c(crimeCols[9],crimeCols[10]), 'AUTO THEFT'=c(crimeCols[11],crimeCols[12]), 'LARCENY FROM AUTO'=c(crimeCols[11],crimeCols[12])) crimeCols <- as.data.frame(t(data.frame(crimeTypes))) col_cols <- crimeCols[,2] names(col_cols) <- names(crimeTypes) ggplot(data = SandtownWinchester_df) + geom_polygon(aes(x=long, y=lat, group=group), color='black', fill='white') + geom_point(data = sw_props, aes(x=long, y=lat), shape = 0, color = 'gray') + geom_point(data = sw_vacB, aes(x=long, y=lat), shape = 4, color = 'red') + geom_point(data = sw_crime_2012, aes(x=long, y=lat, color=description), shape = 'o',size=2) + scale_color_manual(values = col_cols) + coord_equal() + annotate("text", x = 1415200, y = 598300, label="Sandtown-\nWinchester\nVacant Properties\nand Crime", size=6, color="black") + new_theme_empty + guides(color=guide_legend("",nrow=5)) + ggsave('img/SandtownWinchesterVacantsandCrime.png') ######################################################################## # Vacant Lots HarlemPark_df <- fortify(nbhds_shp@polygons[['Harlem Park']]) hp_mtr <- as.matrix(HarlemPark_df[,1:2]) hp_props <- data.frame(pip(parcel_mtrx, hp_mtr)) hp_vacB <- data.frame(pip(vacBld_mtrx, hp_mtr)) hp_vacL <- data.frame(pip(vacBld_mtrx, hp_mtr)) hp_crime <- data.frame(pip(crime_mtrx, hp_mtr)) hp_crime <- crimeData[rownames(hp_crime),] hp_crime_2012 <- subset(hp_crime, year(crimeDate2)==2012) colnames(hp_props) <- c('long','lat') colnames(hp_vacB) <- c('long','lat') colnames(hp_vacL) <- c('long','lat') # https://github.com/wch/ggplot2/wiki/New-theme-system new_theme_empty <- theme_bw() new_theme_empty$line <- element_blank() new_theme_empty$rect <- element_blank() new_theme_empty$strip.text <- element_blank() new_theme_empty$axis.text <- element_blank() new_theme_empty$plot.title <- element_blank() new_theme_empty$axis.title <- element_blank() new_theme_empty$legend.position <- 'bottom' new_theme_empty$plot.margin <- structure(c(0, 0, -1, -1), unit = "lines", valid.unit = 3L, class = "unit") crimeCols <- brewer.pal(12,'Paired') crimeTypes <- list('RAPE'=c(crimeCols[1],crimeCols[2]), 'ARSON'=c(crimeCols[1],crimeCols[2]), 'COMMON ASSAULT'=c(crimeCols[3],crimeCols[4]), 'AGG. ASSAULT'=c(crimeCols[3],crimeCols[4]), 'SHOOTING'=c(crimeCols[5],crimeCols[6]), 'HOMICIDE'=c(crimeCols[5],crimeCols[6]), 'ROBBERY - STREET'=c(crimeCols[7],crimeCols[8]), 'ROBBERY - CARJACKING'=c(crimeCols[7],crimeCols[8]), 'ROBBERY - RESIDENCE'=c(crimeCols[7],crimeCols[8]), 'ROBBERY - COMMERCIAL'=c(crimeCols[7],crimeCols[8]), 'BURGLARY'=c(crimeCols[9],crimeCols[10]), 'LARCENY'=c(crimeCols[9],crimeCols[10]), 'AUTO THEFT'=c(crimeCols[11],crimeCols[12]), 'LARCENY FROM AUTO'=c(crimeCols[11],crimeCols[12])) crimeCols <- as.data.frame(t(data.frame(crimeTypes))) col_cols <- crimeCols[,2] names(col_cols) <- names(crimeTypes) hpplot <- ggplot(data = HarlemPark_df) + geom_polygon(aes(x=long, y=lat, group=group), color='black', fill='white') + geom_point(data = hp_props, aes(x=long, y=lat), shape = 0, color = 'gray',size=5) + geom_point(data = hp_vacB, aes(x=long, y=lat), shape = 4, color = 'red',size=5) + geom_point(data = hp_crime_2012, aes(x=long, y=lat, color=description), shape = 'o',size=3) + scale_color_manual(values = col_cols) + coord_equal() + annotate("text", x = 1416400, y = 594500, label="Harlem Park\nVacant Properties\nand Crime", size=4, color="black") + new_theme_empty + guides(color=guide_legend("",nrow=5)) ggsave('img/HarlemParkVacantsandCrime.png',width=11, height=8.5) |
To leave a comment for the author, please follow the link and comment on their blog: Obscure Analytics » Rstats.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.