Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
One of the key predictors in my model for this crime project I’m working on is vacant houses and lots. I’ll speak to some findings about the relationship between levels of the different types of crime and vacant property in a later post. But I wanted to put some of these images up now, before I’m done with that, after a conversation at a party tonight.
This plot is of 15,928 vacant buildings and 17,169 vacant lots (according to the datasets here) across the city of Baltimore:
Here are visualizations of the 2-dimensional kernel density estimates for both of them. A density estimate essentially gives values at every point on a plane that communicate how close that point is to how many observations of the variable or point process you care about. So the more red, the more vacant properties are clustered together in that area.
And here are kernel density visualizations for homicide and aggravated assault:
And if you’re interested, all the data is from here and here’s the code:
## gis libraries library(spBayes) library(MBA) library(geoR) library(fields) library(sp) library(maptools) library(rgdal) library(classInt) library(lattice) library(xtable) library(spatstat) library(splancs) ## Other packages library(ggplot2) library(foreign) library(stringr) library(lubridate) library(plyr) library(xtable) library(scales) library(RColorBrewer) library(grid) library(ggmap) library(gridExtra) library(ggmcmc) setwd('/home/rmealey/Dropbox/school/gisClass/FinalProject') options(digits=10) Save <- function(projName){ savehistory(paste(projName,'.Rhistory',sep='')) save.image(paste(projName,'.RData',sep='')) } sv <- function() Save('FinalProject') ######################################################################## # City Boundary Shape File city_df <- read.dbf('Baltcity_20Line/baltcity_line.dbf') city_shp <- readOGR(dsn='Baltcity_20Line', layer='baltcity_line') origProj <- city_shp@proj4string ## Store original projection #city_shp = spTransform(city_shp,CRS("+proj=longlat +datum=WGS84")) city_pl_df <- fortify(city_shp, region='LABEL') cityLineCoords <- data.frame(city_shp@lines[[1]]@Lines[[1]]@coords) cityLinePoly <- Polygon(cityLineCoords) cityLinePolys <- Polygons(list(cityLinePoly), ID='cityline') cityLineSpPoly <- SpatialPolygons(list(cityLinePolys),proj4string=origProj) cityLineCoords <- cityLineCoords[,c(2,1)]) ######################################################################## ## Neighborhood Shape Files read in v1 nbhds_df <- read.dbf('Neighborhood_202010/nhood_2010.dbf') nbhds_shp <- readOGR(dsn='Neighborhood_202010', layer='nhood_2010') origProj <- nbhds_shp@proj4string ## Store original projection #nbhds_shp = spTransform(nbhds_shp,CRS("+proj=longlat +datum=WGS84")) nbhds_pl_df <- fortify(nbhds_shp, region='LABEL') ######################################################################## ## Utility Functions ## Read lat/lng coords function str2LatLong <- function(in_df){ latlng <- str_replace(str_replace(in_df$Location.1,'\\(',''),')','') latlng <- str_split(latlng,', ') latlng_df <- ldply(latlng[in_df$Location.1 != '']) out_df <- in_df out_df$lat <- as.numeric(latlng_df[,1]) out_df$long <- as.numeric(latlng_df[,2]) return(out_df) } ## convert projection function convProj <- function(in_df,in_proj,out_proj){ latlong <- in_df[,c('long','lat')] latlong_spdf <- SpatialPoints(latlong, proj4string=in_proj) latlong_spdf <- spTransform(latlong_spdf,out_proj) latlong_spdf_coords <- coordinates(latlong_spdf) out_df <- in_df out_df$long <- latlong_spdf_coords[,1] out_df$lat <- latlong_spdf_coords[,2] return(out_df) } ######################################################################## ## Preprocess Crime Data crimeData <- read.csv('OpenDataSets/BPD_Part_1_Victim_Based_Crime_Data.csv') crimeData_NoCoords <- crimeData[crimeData$Location.1 == '',] crimeData <- crimeData[crimeData$Location.1 != '',] ## Get and convert projection crimeData <- str2LatLong(crimeData) ## Incidents already in correct proj crimeData_ProjOrig <- crimeData[crimeData$lat>100,] crimeData <- crimeData[crimeData$lat<100,] inProj <- CRS("+proj=longlat +datum=WGS84") outProj <- origProj crimeData <- convProj(crimeData, inProj, outProj) ## Parse Dates crimeData$crimeDate2 <- parse_date_time( crimeData$crimeDate, orders='%m/%d/%Y' ) ## Get Burglary Incidents burg_df <- subset(crimeData, description=='BURGLARY') ## Hold Out 2012 Incidents burg_df_ho <- subset(burg_df, year(crimeDate2) == '2012') burg_df <- subset(burg_df, year(crimeDate2) != '2012') ggplot(data=burg_df, aes(x=long,y=lat)) + geom_point() + coord_equal() ## Get Street Robbery Incidents robbStr_df <- subset(crimeData, description=="ROBBERY - STREET") ## Hold Out 2012 Incidents robbStr_df_ho <- subset(robbStr_df, year(crimeDate2) == '2012') robbStr_df <- subset(robbStr_df, year(crimeDate2) != '2012') ggplot(data=robbStr_df, aes(x=long,y=lat)) + geom_point() + coord_equal() ## Homicide homic_df <- subset(crimeData, description=='HOMICIDE') ## Hold Out 2012 Incidents homic_df_ho <- subset(homic_df, year(crimeDate2) == '2012') homic_df <- subset(homic_df, year(crimeDate2) != '2012') ggplot(data=homic_df, aes(x=long,y=lat)) + geom_point() + coord_equal() ## Aggravated Assault aggrAslt_df <- subset(crimeData, description=='AGG. ASSAULT') ## Hold Out 2012 Incidents aggrAslt_df_ho <- subset(aggrAslt_df, year(crimeDate2) == '2012') aggrAslt_df <- subset(aggrAslt_df, year(crimeDate2) != '2012') ggplot(data=aggrAslt_df, aes(x=long,y=lat)) + geom_point() + coord_equal() ######################################################################## # Religous Building Locations relig_df <- read.csv('geocoded/Religious_Buildings_gc.csv') ## Remove na rows relig_df <- relig_df[complete.cases(relig_df),] inProj <- CRS("+proj=longlat +datum=WGS84") outProj <- origProj relig_df <- convProj(relig_df, inProj, outProj) ######################################################################## # Police Station Locations police_df <- read.csv('geocoded/Police_Stations_gc.csv') inProj <- CRS("+proj=longlat +datum=WGS84") outProj <- origProj police_df <- convProj(police_df, inProj, outProj) ######################################################################## # Hospitals Locations hospitals_df <- read.csv('geocoded/Hospitals.csv') inProj <- CRS("+proj=longlat +datum=WGS84") outProj <- origProj hospitals_df <- convProj(hospitals_df, inProj, outProj) ######################################################################## # CCTV Locations cams_df <- read.csv('OpenDataSets/CCTV_Locations.csv') cams_df <- str2LatLong(cams_df) inProj <- CRS("+proj=longlat +datum=WGS84") outProj <- origProj cams_df <- convProj(cams_df, inProj, outProj) cams_df$type <- "CCTV Camera" ######################################################################## # Vacant Buildings vacantBuildings_df <- read.csv('OpenDataSets/Vacant_Buildings.csv') vacantBuildings_df <- str2LatLong(vacantBuildings_df) inProj <- CRS("+proj=longlat +datum=WGS84") outProj <- origProj vacantBuildings_df <- convProj(vacantBuildings_df, inProj, outProj) vacantBuildings_df$type <- 'Vacant Building' ######################################################################## # Vacant Lots vacantLots_df <- read.csv('OpenDataSets/Vacant_Lots.csv') vacantLots_df <- str2LatLong(vacantLots_df) inProj <- CRS("+proj=longlat +datum=WGS84") outProj <- origProj vacantLots_df <- convProj(vacantLots_df, inProj, outProj) vacantLots_df$type <- 'Vacant Lot' ######################################################################## ## Get kernel density estimates kde2dRange <- c(apply(burg_df[,c('long','lat')], 2, range)) getKde <- function(in_df, N=400, Lims=kde2dRange){ pts <- as.matrix(in_df[,c('long','lat')]) dens <- kde2d(pts[,1],pts[,2], n=N, lims=Lims) dens_df <- data.frame(expand.grid(dens$x, dens$y), z = c(dens$z)) colnames(dens_df) <- c('x','y','z') return(dens_df) } plotKde2d <- function(in_df){ fillCols <- rev(brewer.pal(11,'Spectral')) return( ggplot() + geom_tile(data = in_df, aes(x=x, y=y, fill=z, group=1)) + scale_fill_gradientn(colours=fillCols) + theme_bw() + coord_equal() ) } saveKde2Plot <- function(plotDf, plotName, plotTitle,titlCol='white'){ # https://github.com/wch/ggplot2/wiki/New-theme-system new_theme_empty <- theme_bw() new_theme_empty$line <- element_blank() new_theme_empty$rect <- element_blank() new_theme_empty$strip.text <- element_blank() new_theme_empty$axis.text <- element_blank() new_theme_empty$plot.title <- element_blank() new_theme_empty$axis.title <- element_blank() new_theme_empty$legend.position <- 'none' new_theme_empty$plot.margin <- structure(c(0, 0, -1, -1), unit = "lines", valid.unit = 3L, class = "unit") nbhds_pl_df2 <- nbhds_pl_df[,c('long','lat','group')] colnames(nbhds_pl_df2) <- c('x','y','group') plotKde2d(plotDf) + geom_path(data=nbhds_pl_df2,aes(x=x,y=y, group=group),color='black',alpha=0.4) + new_theme_empty + annotate("text", x = 1405000, y = 568000, label=plotTitle, size=8, color=titlCol) ggsave(paste('img/',plotName,'.png', sep='')) } ## Get all simple gaussian 2d kernel density estimates burgDens <- getKde(burg_df) ## Burglary, 7 robbStrDens <- getKde(robbStr_df) ## Street Robbery, 7 homicDens <- getKde(homic_df) ## Homicide, 7 aggrAsltDens <- getKde(aggrAslt_df) ## Aggr Assault, 7 hospitalsDens <- getKde(hospitals_df) ## Hospitals policeDens <- getKde(police_df) ## Police Stations religDens <- getKde(relig_df) ## Religous Buildings camsDens <- getKde(cams_df) ## Cameras, 1 vacBldDens <- getKde(vacantBuildings_df) ## Vacant Buildings, 5 vacLotsDens <- getKde(vacantLots_df) ## Vacant Lots, 6 ## plot densities saveKde2Plot(burgDens, 'BurglaryKde2d', 'Burglary\n Density') saveKde2Plot(robbStrDens, 'StreetRobberyKde2d', 'Street\n Robbery\n Density') saveKde2Plot(homicDens, 'HomicideKde2d', 'Homicide\n Density') saveKde2Plot(aggrAsltDens, 'aggrAsltKde2d', 'Aggravated\n Assault\n Density') saveKde2Plot(hospitalsDens, 'HospitalKde2d', 'Hospital\n Location\n Density') saveKde2Plot(policeDens, 'PoliceKde2d', 'Police\n Station\n Density') saveKde2Plot(religDens, 'ReligiousKde2d', 'Religous\n Building\n Density') saveKde2Plot(camsDens, 'CCTVCamsKde2d', 'CCTV\n Cameras\n Density') saveKde2Plot(vacBldDens, 'VacBldgKde2d', 'Vacant\n Building\n Density') saveKde2Plot(vacLotsDens, 'vacLotsKde2d', 'Vacant\n Lot\n Density') |
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.