Webinar Tomorrow: Big Data Trees and Hadoop Connection in Revolution R Enterprise 6.1
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Tomorrow at 9AM Pacific, Revolution Analytics VP of Product Development Sue Ranney will introduce two key Big Data features of the new Revolution R Enterprise 6.1. Now you can train classification and regression trees on data sets of unlimited size, quickly and using the resources of multiple processors and clusters. (This white paper describes our implementation of tree models on big data.) You can also now apply the Big Data modeling algorithms to structured data in Hadoop's HDFS file system. (Here's a demo.)
Here's the abstract for the webinar, and you can register your seat at the Revolution Analytics website.
New Advances in High Performance Analytics with R: ‘Big Data’ Decision Trees and Analysis of Hadoop Data
Revolution R Enterprise 6.1 includes two important advances in high performance predictive analytics with R: (1) big data decision trees, and (2) the ability to easily extract and perform predictive analytics on data stored in the Hadoop Distributed File System (HDFS).
Classification and regression trees are among the most frequently used algorithms for data analysis and data mining. The implementation provided in Revolution Analytics’ RevoScaleR package is parallelized, scalable, distributable, and designed with big data in mind.
Decision trees and all of the other high performance prediction analytics functions provided with RevoScaleR (such as linear and logistic regression, generalized linear models, and k-means clustering) can now also be used to analyze data stored in the HDFS file system. After specifying the connection parameters to the HDFS file system, some or all of the data can be directly explored, analyzed or quickly and efficiently extracted into a native file system.
In this webinar we’ll drill down into these two new capabilities and show some examples.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.