Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
In the intermission, I had a great conversation with Oliver Ratman on his talk of yesterday on the surprising feature that some models produce as “data” some sample from a pseudo-posterior.. Opening once again new vistas! The following talks were more on the mathematical side, with James Cussens focussing on the use of integer programming for Bayesian variable selections, then Éric Moulines presenting a recent work with a PhD student of his on PAC-Bayesian bounds and the superiority of combining experts. Including a CRAN package. Éric concluded his talk with the funny occurence of Peter’s photograph on Éric’s Microsoft Research Profile own page, due to Éric posting our joint photograph at the top of Pic du Midi d’Ossau in 2005… (He concluded with a picture of the mountain that was the exact symmetry of mine yesterday!)
The afternoon was equally superb with Gareth Roberts covering fifteen years of scaling MCMC algorithms, from the mythical 0.234 figure to the optimal temperature decrease in simulated annealing, John Kent playing the outlier with an EM algorithm—however including a formal prior distribution and raising the challenge as to why Bayesians never had to constrain the posterior expectation, which prompted me to infer that (a) the prior distribution should include all constraints and (b) the posterior expectation was not the “right” tool in non-convex parameters spaces—. Natalia Bochkina presented a recent work, joint with Peter Green, on connecting image analysis with Bayesian asymptotics, reminding me of my early attempts at reading Ibragimov and Has’minskii in the 1990′s. Then a second work with Vladimir Spoikoini on Bayesian asymptotics with misspecified models, introducing a new notion of effective dimension. The last talk of the day was by Nils Hjort about his coming book on “Credibility, confidence and likelihood“—not yet advertised by CUP—which sounds like an attempt at resuscitating Fisher by deriving distributions in the parameter space from frequentist confidence intervals. I already discussed this notion in an earlier blog, so I am fairly skeptical about it, but the talk was representative of Nils’ highly entertaining and though-provoking style! Esp. as he sprinkled the talk with examples where MLE (and some default Bayes estimators) did not work. And reanalysed one of Chris Sims‘ example presented during his Nobel Prize talk…
Filed under: Books, pictures, R, Running, Statistics, Travel, University life, Wines Tagged: ABC, Bayes factor, Bristol, Chris Sims, CIRM, confidence distribution, CRAN, g-prior, hyper-g-prior, MCMC, model selection, Nobel Prize, Pic du Midi d’Ossau, R, SuSTain
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.