Site icon R-bloggers

Random and fixed effects in sensory profiling

[This article was first published on Wiekvoet, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
I am reading Introduction into mixed modelling by N.W. Galway. It is partly a repeat of things I know, but I expect to use mixed models quite a lot the coming time, so it is good to repeat these things.
My problem with this book is a sensory example in chapter 2. It is profiling data, but with some twists, as happens in real life. He also makes some odd choices.

Design

The test concerns four hot products (ravioli). Because the products are hot, it was found not feasible to use a proper balanced design within each day (e.g. Williams designs). Within a day each presentation (he used presentation for rounds) has one product, as shown in the table below. Which is fine in a way, I do believe in making designs which be executed in practice. However, I come from a facility where we would at least have tried to solve this with the ‘au-bain-marie’.

Table 1, allocation of products A to D over presentations and days.
Day Presentation 1 Presentation 2 Presentation 3 Presentation 4
1 B A C D
2 C D B A
3 A C B D

Within each presentation the nine assessors get served portions. It was randomized though not registered who got what serving. Even so, a random variable was created to serve as proxy. I understand this does not make a difference if servings are nested in presentations and days. Still, it removes the option of actually looking at this effect except as nested within servings and days. I can actually imagine that the product served first is different, especially in case of sloppy sensory practices, so it would be nice to be able to check this.

Model

The following effects were used in the model(s)
Table 2. Allocation of effects
Effect Allocation
Day Random
Day.Presentation Random
Day.Presentation.Serving Random
Product Fixed
Assessor Fixed
Product.Assessor Fixed

Here I got my ax to grind.

Conclusion


I dislike the design, the sensory foundation and interpretation. However, if you ignore that sensory based dislike, the model actually makes sense and is a nice example. On top of that, the book has R code using lme (nlme package), with code on the download site http://www.wiley.com/legacy/wileychi/mixed-modelling/ has both nlme and lme4 examples, so is up to date. I am looking forward to reading the next chapters.

To leave a comment for the author, please follow the link and comment on their blog: Wiekvoet.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.